The 2023 MDPI Annual Report has
been released!
 
14 pages, 12738 KiB  
Article
Combined Transcriptome and Metabolome Analysis of Lupinus polyphyllus Response to PEG Stress
by Shujie Chai, Wenke Dong and Huiling Ma
Agronomy 2024, 14(5), 1045; https://doi.org/10.3390/agronomy14051045 (registering DOI) - 14 May 2024
Abstract
Drought stress is a common abiotic stress, and Lupinus polyphyllus presents strong adaptability, but its drought resistance mechanism has not been explored. This study used PEG-6000 to simulate drought stress, and the H2O2 content, O2 generation rate and [...] Read more.
Drought stress is a common abiotic stress, and Lupinus polyphyllus presents strong adaptability, but its drought resistance mechanism has not been explored. This study used PEG-6000 to simulate drought stress, and the H2O2 content, O2 generation rate and MDA content were determined. Transcriptome sequencing and untargeted metabolome analyses were also carried out on an Iceland germplasm and American B germplasm under different drought stress durations. The results showed that the gene regulation range in the American B germplasm was greater, whether genes were upregulated or downregulated. And the number of genes in the American B germplasm was higher than that in the Iceland germplasm. Additionally, the Iceland germplasm produced less peroxide under PEG stress than the Iceland germplasm. The Iceland germplasm was more stable than the American B germplasm under PEG stress, which can be shown in two aspects: peroxide content and gene regulation quantity. Joint transcriptomics and metabolomics analysis showed that genes and metabolites related to secondary and carbon metabolism were mainly involved in the response of Lupinus polyphyllus to PEG-simulated drought stress. The metabolites mainly included phenylalanine, tyrosine, trans-2-hydroxycinnamate, starch synthase, 1,4-alpha glucan branching enzyme and glycogen phosphorylase, and genes mainly included COMT, F5H, REF1, CAD, UGT72E and TPS. These results provided genetic resources and a theoretical basis for further molecular breeding of Lupinus polyphyllus. Full article
(This article belongs to the Special Issue Advances in Stress Biology of Forage and Turfgrass)
10 pages, 1005 KiB  
Article
Initial Low-Dose Hydroxyurea and Anagrelide Combination in Essential Thrombocythemia: Comparable Response with Lower Toxicity
by Young Hoon Park, Yeung-Chul Mun, Sewon Lee and Yongchel Ahn
J. Clin. Med. 2024, 13(10), 2901; https://doi.org/10.3390/jcm13102901 (registering DOI) - 14 May 2024
Abstract
Background and Objectives: Essential thrombocythemia (ET) is a myeloproliferative neoplasm that overproduces platelets and is associated with life-threatening thrombosis. Medical cytoreduction either with hydroxyurea (HU) or anagrelide (AG) is widely used, but drug intolerance or resistance are major concerns. Low-dose combination of HU [...] Read more.
Background and Objectives: Essential thrombocythemia (ET) is a myeloproliferative neoplasm that overproduces platelets and is associated with life-threatening thrombosis. Medical cytoreduction either with hydroxyurea (HU) or anagrelide (AG) is widely used, but drug intolerance or resistance are major concerns. Low-dose combination of HU and AG as an alternative strategy has been explored in various studies. It showed comparable response with acceptable toxicity in second-line settings for patients who experienced side effects from prior monotherapy. In this study, we evaluated the efficacy and safety of upfront combination for ET patients. Materials and Methods: From January 2018 to June 2022, a total of 241 ET patients with intermediate to high risk were enrolled. We identified 21 patients with initial drug combinations and compared treatment outcomes and adverse events (AEs) between combination and monotherapy groups. Results: The median age was 62 years old (range, 26–87) and median platelet count was 912 × 109/L (range, 520–1720). Overall treatment response did not exhibit significant differences between the groups, although there was a trend towards a lower response rate in patients treated with AG alone at 3 months post-treatment (AG + HU, 85.7% vs. AG alone, 75.4%, p = 0.068). AEs of any grade occurred in 52.3% of the combination group, 44.3% of the HU monotherapy group, and 43.4% of the AG single group, respectively. Of note was that the HU plus AG combination group suffered a lower incidence of grade 3–4 AEs compared to the other two groups, with statistical significance (p = 0.008 for HU monotherapy vs. combination therapy and p < 0.01 for AG monotherapy vs. combination therapy). Conclusions: Our findings demonstrated that the upfront low-dose combination approach showed feasible clinical outcomes with significantly lower severe AEs compared to conventional monotherapy. These results may offer valuable insights to clinicians for future prospective investigations. Full article
Show Figures

Figure 1

9 pages, 444 KiB  
Study Protocol
Integration of Smart Home and Building Automation Systems in Virtual Reality and Robotics-Based Technological Environment for Neurorehabilitation: A Pilot Study Protocol
by Sara Federico, Mirko Zitti, Martina Regazzetti, Enrico Dal Pozzo, Błażej Cieślik, Alberto Pomella, Francesca Stival, Marco Pirini, Giorgia Pregnolato and Pawel Kiper
J. Pers. Med. 2024, 14(5), 522; https://doi.org/10.3390/jpm14050522 (registering DOI) - 14 May 2024
Abstract
Technological innovation has revolutionized healthcare, particularly in neurological rehabilitation, where it has been used to address chronic conditions. Smart home and building automation (SH&BA) technologies offer promising solutions for managing chronic disabilities associated with such conditions. This single group, pre-post longitudinal pilot study, [...] Read more.
Technological innovation has revolutionized healthcare, particularly in neurological rehabilitation, where it has been used to address chronic conditions. Smart home and building automation (SH&BA) technologies offer promising solutions for managing chronic disabilities associated with such conditions. This single group, pre-post longitudinal pilot study, part of the H2020 HosmartAI project, aims to explore the integration of smart home technologies into neurorehabilitation. Eighty subjects will be enrolled from IRCCS San Camillo Hospital (Venice, Italy) and will receive rehabilitation treatment through virtual reality (VR) and robotics devices for 15 hours per day, 5 days a week for 3 weeks in the HosmartAI Room (HR), equipped with SH&BA devices measuring the environment. The study seeks to optimize patient outcomes and refine rehabilitation practices. Findings will be disseminated through peer-reviewed publications and scientific meetings, contributing to advancements in neurological rehabilitation and guiding future research. Full article
23 pages, 1089 KiB  
Article
Nonlinear Slippage of Tensile Armor Layers of Unbonded Flexible Riser Subjected to Irregular Loads
by Qingsheng Liu, Zhongyuan Qu, Xiaoya Liu, Jiawei He, Gang Wang, Sicong Wang and Feng Chen
J. Mar. Sci. Eng. 2024, 12(5), 818; https://doi.org/10.3390/jmse12050818 (registering DOI) - 14 May 2024
Abstract
The unbonded flexible riser has been increasingly applied in the ocean engineering industry to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear [...] Read more.
The unbonded flexible riser has been increasingly applied in the ocean engineering industry to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear hysteresis phenomenon, which is a research hotspot and difficulty. In this paper, on the basis of a typical eight-layer unbonded flexible riser model, the nonlinear slippage of a tensile armor layer and the corresponding nonlinear behavior of an unbonded flexible riser subjected to irregular external loads are studied by numerical modeling with detailed cross-sectional properties of the helical layers, and are verified through a theoretical method considering the coupled effect of the external loads on the unbonded flexible riser. Firstly, the balance equation of each layer considering the effect of external loads is established based on functional principles, and the overall theoretical model of the unbonded flexible riser is set up in consideration of the contact between adjacent layers. Secondly, the numerical modeling of each separate layer within the unbonded flexible riser, including the actual geometry of the carcass and pressure armor layer, is established, and solid elements are applied to all the interlayers, thus simulating the nonlinear contact and friction between and within interlayers. Finally, after verification through test data, the behavior of the unbonded flexible riser under the cyclic axial force, torsion, bending moment, and irregular external and internal pressure is studied. The results show that the tensile armor layer can slip under irregular loads. Additionally, some suggestions related to the analysis of unbonded flexible risers under irregular loads are drawn in the end. Full article
(This article belongs to the Section Ocean Engineering)
26 pages, 1083 KiB  
Article
Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar
by Jing Liu, Pengcheng Huang, Cao Zeng, Guisheng Liao, Jingwei Xu, Haihong Tao and Filbert H. Juwono
Remote Sens. 2024, 16(10), 1737; https://doi.org/10.3390/rs16101737 (registering DOI) - 14 May 2024
Abstract
For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets [...] Read more.
For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

19 pages, 3432 KiB  
Article
AsdinNorm: A Single-Source Domain Generalization Method for the Remaining Useful Life Prediction of Bearings
by Juan Xu, Bin Ma, Weiwei Chen and Chengwei Shan
Lubricants 2024, 12(5), 175; https://doi.org/10.3390/lubricants12050175 (registering DOI) - 14 May 2024
Abstract
The remaining useful life (RUL) of bearings is vital for the manipulation and maintenance of industrial machines. The existing domain adaptive methods have achieved major achievements in predicting RUL to tackle the problem of data distribution discrepancy between training and testing sets. However, [...] Read more.
The remaining useful life (RUL) of bearings is vital for the manipulation and maintenance of industrial machines. The existing domain adaptive methods have achieved major achievements in predicting RUL to tackle the problem of data distribution discrepancy between training and testing sets. However, they are powerless when the target bearing data are not available or unknown for model training. To address this issue, we propose a single-source domain generalization method for RUL prediction of unknown bearings, termed as the adaptive stage division and parallel reversible instance normalization model. First, we develop the instance normalization of the vibration data from bearings to increase data distribution diversity. Then, we propose an adaptive threshold-based degradation point identification method to divide the healthy and degradation stages of the run-to-failure vibration data. Next, the data from degradation stages are selected as training sets to facilitate the RUL prediction of the model. Finally, we combine instance normalization and instance denormalization of the bearing data into a unified GRU-based RUL prediction network for the purpose of leveraging the distribution bias in instance normalization and improving the generalization performance of the model. We use two public datasets to verify the proposed method. The experimental results demonstrate that, in the IEEE PHM Challenge 2012 dataset experiments, the prediction accuracy of our model with the average RMSE value is 1.44, which is 11% superior to that of the suboptimal comparison model (Transformer model). It proves that our model trained on one-bearing data achieves state-of-the-art performance in terms of prediction accuracy on multiple bearings. Full article
(This article belongs to the Special Issue New Conceptions in Bearing Lubrication and Temperature Monitoring)
Show Figures

Figure 1

14 pages, 254 KiB  
Article
Effects of Gabapentin on the Treatment of Behavioral Disorders in Dogs: A Retrospective Evaluation
by Taylor Kirby-Madden, Caitlin T. Waring and Meghan Herron
Animals 2024, 14(10), 1462; https://doi.org/10.3390/ani14101462 (registering DOI) - 14 May 2024
Abstract
The use of gabapentin in treating dogs with behavioral disorders is not well described. To characterize behavioral effects of gabapentin, this study surveyed 50 owners whose dogs were prescribed gabapentin at a veterinary behavior-focused practice over a five-year period. Most owners (72%) reported [...] Read more.
The use of gabapentin in treating dogs with behavioral disorders is not well described. To characterize behavioral effects of gabapentin, this study surveyed 50 owners whose dogs were prescribed gabapentin at a veterinary behavior-focused practice over a five-year period. Most owners (72%) reported that gabapentin was moderately or very effective at improving their dog’s behavior. The majority of owners reported at least one side effect (70%), with sedation being the most common. Sedation was more likely to be seen at doses higher than 30 mg/kg. Specific dose ranges (mg/kg) did not correlate with any other reports of side effects nor effectiveness. Dogs with a diagnosis of conflict-related aggression were more likely to have owners report that gabapentin was effective at improving behavior compared to dogs with other behavioral diagnoses (p = 0.04), while dogs diagnosed with aggression secondary to high arousal were less likely to have owners report that gabapentin was effective (p = 0.01). Overall, reports of effect varied widely and, with the exception of sedation, did not correlate with specific mg/kg dose ranges. Results suggest that some dogs may be more sensitive or resistant to adverse and/or therapeutic effects than others and multiple dosage trials may be needed before finding the best fit. Full article
(This article belongs to the Section Veterinary Clinical Studies)
16 pages, 4441 KiB  
Article
Therapeutic Potential of Fucoidan in Alleviating Histamine-Induced Liver Injury: Insights from Mice Studies
by Mengyao Zhang, Huiqian Liu, Linlin Xu, Xizi Zhang, Wei Chen and Chengtao Wang
Foods 2024, 13(10), 1523; https://doi.org/10.3390/foods13101523 (registering DOI) - 14 May 2024
Abstract
Histamine, a bioactive component in certain foods such as Huangjiu has been associated with liver injury and disrupted intestinal balance. This study explored the potential therapeutic effects of fucoidan (FCD) in mitigating histamine-induced imbalances in mice. We found that FCD mitigated liver injury, [...] Read more.
Histamine, a bioactive component in certain foods such as Huangjiu has been associated with liver injury and disrupted intestinal balance. This study explored the potential therapeutic effects of fucoidan (FCD) in mitigating histamine-induced imbalances in mice. We found that FCD mitigated liver injury, reducing transaminases, oxidative stress, and inflammation. Histological improvements included decreased cell infiltration and necrosis. FCD restored tight junction proteins and suppressed inflammation-related genes. Western blot analysis revealed FCD’s impact on TGF-β1, p-AKT, AKT, CYP2E1, Grp78, NLRP3, Cas-1, and GSDMD. Gut LPS levels decreased with FCD. Gut microbiota analysis showed FCD’s modulation effect, reducing Firmicutes and increasing Bacteroides. FCD demonstrates potential in alleviating histamine-induced liver injury, regulating inflammation, and influencing gut microbiota. Further research exploring higher dosages and additional parameters is warranted. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

4 pages, 159 KiB  
Editorial
Special Issue on Offshore Wind Energy
by E. Uzunoglu, A. Souto-Iglesias and C. Guedes Soares
J. Mar. Sci. Eng. 2024, 12(5), 816; https://doi.org/10.3390/jmse12050816 (registering DOI) - 14 May 2024
Abstract
As the impact of fossil fuels on the planet becomes clear, the world is increasingly focusing on renewable energy sources [...] Full article
(This article belongs to the Special Issue Offshore Wind Energy)
45 pages, 6295 KiB  
Article
Gymnadenia winkeliana—A New Orchid Species to Romanian Flora
by Nora E. Anghelescu, Lori Balogh, Mihaela Balogh, Nicoleta Kigyossy, Mihaela I. Georgescu, Sorina A. Petra, Florin Toma and Adrian G. Peticila
Plants 2024, 13(10), 1363; https://doi.org/10.3390/plants13101363 (registering DOI) - 14 May 2024
Abstract
A novel species, Gymnadenia winkeliana, has been identified in the Bucegi Natural Park ROSCI0013, located in the Southern Carpathians of Central Romania. Two moderately sized populations of Gymnadenia winkeliana, totalling 120–140 individuals, were discovered inhabiting the alpine grasslands of the park, [...] Read more.
A novel species, Gymnadenia winkeliana, has been identified in the Bucegi Natural Park ROSCI0013, located in the Southern Carpathians of Central Romania. Two moderately sized populations of Gymnadenia winkeliana, totalling 120–140 individuals, were discovered inhabiting the alpine grasslands of the park, situated 2.000 m above sea level. To describe this newly found population as comprehensively as possible, 44 vegetative and floral organs/organ parts were directly studied and measured from living plants. Special attention was focused on the characteristics that proved to have taxonomic significance, particularly those involving distinctive details in the morphology of the leaves, perianth, labellum and gynostemium. A total of 223 characteristics were analysed encompassing the morphology of every organ of the plant, cytology and breeding system. Furthermore, comprehensive taxonomic treatment and description, accompanied by colour photographs illustrating the holotype, are provided. Voucher specimens were deposited at the Herbarium of the University of Agriculture and Veterinary Medicine, Bucharest (USAMVB Herbarium barcode: 40102, NEA); Gymnadenia winkeliana, a (micro)endemic species, is characterized as a putative allogamous, facultatively apomict that significantly differs from other Gymnadenia R.Br. species found in Romania. Notably, it distinguishes itself through its smaller habitus (reaching heights of up to 8–10 cm), its two-coloured, rounded/hemispherical inflorescence displaying a gradient of pink hues in an acropetal fashion (ranging from whitish-pink at the base to vivid-pink at the topmost flowers), and its limited distribution in high-altitude areas, encompassing approximately 8–10 km² in the central area of the Bucegi Natural Park. This species has been under observation since 2005, with observed population numbers showing a significant increase over time, from ca. 50–55 (counted at the time of its discovery) to 120–140 individuals (counted in June 2023). Additionally, comprehensive information regarding the habitat, ecology, phenology and IUCN conservation assessments of Gymnadenia winkeliana are provided, including maps illustrating its distribution. Full article
(This article belongs to the Special Issue Plant Taxonomy, Systematics, and Phylogeography)
16 pages, 3638 KiB  
Article
An Anomaly Detection Ensemble for Protection Systems in Distribution Networks
by Chenyin Yuan, Chenhao Sun, Boxuan Yu, Jianhong Su and Runze Li
Appl. Sci. 2024, 14(10), 4158; https://doi.org/10.3390/app14104158 (registering DOI) - 14 May 2024
Abstract
Due to the complex topology, multi-line branches, and dense spatial distribution characteristics of a distribution network, potential disturbances and failures cannot be eliminated in real scenes, which means that higher levels of both reliability and stability are required in its corresponding protection system. [...] Read more.
Due to the complex topology, multi-line branches, and dense spatial distribution characteristics of a distribution network, potential disturbances and failures cannot be eliminated in real scenes, which means that higher levels of both reliability and stability are required in its corresponding protection system. For this reason, the timely monitoring and pinpoint identification of an underlying abnormal operation status in those protection systems must be ensured. To this end, a data-driven-based real-time anomaly detection ensemble is proposed in this paper. First, the kernel principal components investigation (KPCI) process is deployed to compress the dimensionality of input data, which can reduce the computational complexity within such high-dimensional data environments. Next, the isolated forest (IF) model is applied to excavate potential outliers according to the numeric range of the normal operating states of different features. Thus, a better detection performance in biased or sparse distributions can be achieved by reacting swiftly to those outliers. Finally, the operation data of the power distribution network protection system in a certain area is used as a simulation case. It is evident that compared with the single model IF detection method, combining the IF with the data dimension reduction model can effectively reduce data complexity. Due to the addition of kernel functions, KPCI can adapt to high-dimensional data environments better than standard PCI, and it also has certain advantages in calculation efficiency. This validates the theory that the proposed model has a high level of anomaly detection in practical applications, can assist in the automatic identification of and response to power distribution network security risks, effectively dig out potential system operational disturbances and state abnormalities, and achieve real-time anomaly monitoring and early warning. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

27 pages, 1046 KiB  
Review
Insights into Cold Plasma Treatment on the Cereal and Legume Proteins Modification: Principle, Mechanism, and Application
by Bin Li, Lianxin Peng, Yanan Cao, Siyao Liu, Yuchen Zhu, Jianguo Dou, Zhen Yang and Chenguang Zhou
Foods 2024, 13(10), 1522; https://doi.org/10.3390/foods13101522 (registering DOI) - 14 May 2024
Abstract
Cereal and legume proteins, pivotal for human health, significantly influence the quality and stability of processed foods. Despite their importance, the inherent limited functional properties of these natural proteins constrain their utility across various sectors, including the food, packaging, and pharmaceutical industries. Enhancing [...] Read more.
Cereal and legume proteins, pivotal for human health, significantly influence the quality and stability of processed foods. Despite their importance, the inherent limited functional properties of these natural proteins constrain their utility across various sectors, including the food, packaging, and pharmaceutical industries. Enhancing functional attributes of cereal and legume proteins through scientific and technological interventions is essential to broadening their application. Cold plasma (CP) technology, characterized by its non-toxic, non-thermal nature, presents numerous benefits such as low operational temperatures, lack of external chemical reagents, and cost-effectiveness. It holds the promise of improving proteins’ functionality while maximally retaining their nutritional content. This review delves into the pros and cons of different cold plasma generation techniques, elucidates the underlying mechanisms of protein modification via CP, and thoroughly examines research on the application of cold plasma in augmenting the functional properties of proteins. The aim is to furnish theoretical foundations for leveraging CP technology in the modification of cereal and legume proteins, thereby enhancing their practical applicability in diverse industries. Full article
(This article belongs to the Section Food Engineering and Technology)
15 pages, 1354 KiB  
Article
A German DJ, Postmodern Dreams, and the Ambivalent Politics of East–West Exchange at the First Exhibition of Approximate Art in Riga, April 1987
by Kevin C. Karnes
Arts 2024, 13(3), 88; https://doi.org/10.3390/arts13030088 (registering DOI) - 14 May 2024
Abstract
Organized as part of the annual Art Days festival in the capital of the Latvian SSR, the First Exhibition of Approximate Art comprised a cacophonous and provocative mashup of music, dance, performance art, and design. At the center of the event was a [...] Read more.
Organized as part of the annual Art Days festival in the capital of the Latvian SSR, the First Exhibition of Approximate Art comprised a cacophonous and provocative mashup of music, dance, performance art, and design. At the center of the event was a demonstration of mixing and scratching records by Maximilian Lenz, also known as Westbam, one of the leading DJs in West Berlin. Mining archival sources in Berlin and Riga, this article reconstructs the complicated path by which the DJ came to perform at the event. It reveals a surprising network of relations and alliances operating in tandem behind the scenes, featuring a Riga artist dedicated to enacting a vision of postmodern performance in his city, an ambitiously networking émigré Latvian living in exile in West Germany, and a pair of Soviet offices under direct control of the KGB, charged with managing cultural exchanges with the West in hopes of currying sympathies for Soviet culture and policy. Complementing and extending research on the “gaps” and “holes” in the Soviet system that sometimes allowed for the staging of otherwise unacceptable works of art, the story of the First Exhibition of Approximate Art reveals how personal connections and interpersonal networks within even the most highly monitored parts of the system itself—the state security apparatus—could open doors for artistic projects unanticipated and even undesired by the bureaucratic state. Full article
21 pages, 8416 KiB  
Article
Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants
by Anna E. Tsai and Kyriakos Komvopoulos
Materials 2024, 17(10), 2324; https://doi.org/10.3390/ma17102324 (registering DOI) - 14 May 2024
Abstract
The antiwear properties of tribofilms formed on steel surfaces lubricated with various multi-component lubricants were investigated at an elevated temperature and under load-speed conditions conducive to sliding in the boundary lubrication regime. The lubricants contained base oil, reduced-level (secondary) zinc dialkyl dithiophosphate (ZDDP), [...] Read more.
The antiwear properties of tribofilms formed on steel surfaces lubricated with various multi-component lubricants were investigated at an elevated temperature and under load-speed conditions conducive to sliding in the boundary lubrication regime. The lubricants contained base oil, reduced-level (secondary) zinc dialkyl dithiophosphate (ZDDP), and nitrogenous dispersant. The wear resistance of the tribofilms produced from different oil blends was evaluated in the context of the rate of change in the sliding track volume (wear rate for material loss) and the load-bearing capacity, chemical composition, and thickness of the tribofilms. Surface profilometry and scanning electron microscopy were used to quantify the wear performance and detect the prevailing wear mechanisms, whereas X-ray photoelectron spectroscopy elucidated the chemical composition and thickness of the tribofilms. The oil blends without ZDDP did not produce tribofilms with adequate antiwear properties, whereas the oil blends containing ZDDP and dispersant generated tribofilms with antiwear characteristics comparable to those of tribofilms produced from blends with a higher ZDDP content. Although dispersants can suspend oil contaminants and preserve the cleanness of the sliding surfaces, it was found that they can also reduce the antiwear efficacy of ZDDP. This was attributed to an additive-dispersant antagonistic behavior for surface adsorption sites affecting tribofilm chemistry and mechanical properties. Among the blends containing a mixture of ZDDP and dispersant, the best antiwear properties were demonstrated by the tribofilm produced from the blend consisting of base oil, 0.05 wt% ZDDP, and a bis-succinimide dispersant treated with ethylene carbonate. The findings of this investigation demonstrate the potential of multi-component lubricants with reduced-content ZDDP and nitrogen-based dispersant to form effective antiwear tribofilms. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Graphical abstract

21 pages, 2238 KiB  
Article
Patchouli Alcohol Protects the Heart against Diabetes-Related Cardiomyopathy through the JAK2/STAT3 Signaling Pathway
by Lijun Ji, Shuaijie Lou, Yi Fang, Xu Wang, Weiwei Zhu, Guang Liang, Kwangyoul Lee, Wu Luo and Zaishou Zhuang
Pharmaceuticals 2024, 17(5), 631; https://doi.org/10.3390/ph17050631 (registering DOI) - 14 May 2024
Abstract
Diabetic cardiomyopathy (DCM) represents a common pathological state brought about by diabetes mellitus (DM). Patchouli alcohol (PatA) is known for its diverse advantageous effects, notably its anti-inflammatory properties and protective role against metabolic disorders. Despite this, the influence of PatA on DCM remains [...] Read more.
Diabetic cardiomyopathy (DCM) represents a common pathological state brought about by diabetes mellitus (DM). Patchouli alcohol (PatA) is known for its diverse advantageous effects, notably its anti-inflammatory properties and protective role against metabolic disorders. Despite this, the influence of PatA on DCM remains relatively unexplored. To explore the effect of PatA on diabetes-induced cardiac injury and dysfunction in mice, streptozotocin (STZ) was used to mimic type 1 diabetes in mice. Serological markers and echocardiography show that PatA treatment protects the heart against cardiomyopathy by controlling myocardial fibrosis but not by reducing hyperglycemia in diabetic mice. Discovery Studio 2017 software was used to perform reverse target screening of PatA, and we found that JAK2 may be a potential target of PatA. RNA-seq analysis of heart tissues revealed that PatA activity in the myocardium was primarily associated with the inflammatory fibrosis through the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. In vitro, we also found that PatA alleviates high glucose (HG) + palmitic acid (PA)-induced fibrotic and inflammatory responses via inhibiting the JAK2/STAT3 signaling pathway in H9C2 cells. Our findings illustrate that PatA mitigates the effects of HG + PA- or STZ-induced cardiomyopathy by acting on the JAK2/STAT3 signaling pathway. These insights indicate that PatA could potentially serve as a therapeutic agent for DCM treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

21 pages, 3232 KiB  
Article
Modeling of Water, Heat, and Nitrogen Dynamics in Summer Maize under Broad Furrow Irrigation and the Mechanism of Enzyme Activity Response
by Tengfei Liu, Shunsheng Wang and Mingwei Yang
Agronomy 2024, 14(5), 1044; https://doi.org/10.3390/agronomy14051044 (registering DOI) - 14 May 2024
Abstract
This study explores the impact of water and nitrogen management on the dynamics of water, heat, and nitrogen in farmland soil. It also explores the correlations soil factors, enzyme activity, and crop yield. To achieve this, field experiments and HYDRUS model simulations were [...] Read more.
This study explores the impact of water and nitrogen management on the dynamics of water, heat, and nitrogen in farmland soil. It also explores the correlations soil factors, enzyme activity, and crop yield. To achieve this, field experiments and HYDRUS model simulations were conducted in the broad furrow irrigation system of the Yinhuang Irrigation Area. The experiment involved three irrigation levels (60%, 70%, and 80% of field water holding capacity, labeled as W1, W2, and W3, respectively) and three nitrogen application rates (120, 220, and 320 kg·ha−1, labeled as N1, N2, and N3). Results indicated that the HYDRUS model, optimized using field trial data, accurately represented soil dynamics. Soil profile water and nitrogen exhibited greater variation in the root zone (0–40 cm) than in the deeper layers (40–100 cm). Water–nitrogen coupling predominantly influenced water and nitrogen content changes in the soil, with minimal effect on soil temperature. Soil enzyme activities at the trumpet, silking, and maturity stages were significantly affected by water–nitrogen coupling, displaying an initial increase and subsequent decrease over the reproductive period. The highest summer maize yield, reaching 10,928.52 kg·ha−1 under the W2N2 treatment, was 46.64% higher than that under the W1N1 treatment. The redundancy analysis revealed a significant positive correlation between soil nitrate nitrogen content and soil enzyme activity (p < 0.05). Furthermore, there was a significant positive correlation between soil enzyme activity and both maize yields (p < 0.01). This underscores that appropriate water and nitrogen management can effectively enhance yield while improving the soil environment. These findings offer valuable insights for achieving high yields of summer maize in the Yellow River Basin. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

13 pages, 1495 KiB  
Article
Physiological Response of European Sea Bass (Dicentrarchus labrax) Juveniles to an Acute Stress Challenge: The Impact of Partial and Total Dietary Fishmeal Replacement by an Insect Meal
by Ana Basto, Diogo Peixoto, Marina Machado, Benjamin Costas, Daniel Murta and Luisa M. P. Valente
J. Mar. Sci. Eng. 2024, 12(5), 815; https://doi.org/10.3390/jmse12050815 (registering DOI) - 14 May 2024
Abstract
This study aimed to explore the effect of FM substitution by defatted Tenebrio molitor larvae meal (dTM) on the response of European seabass to an acute stress challenge. An FM-based diet was used as a control and two other isoproteic/isoenergetic diets were formulated [...] Read more.
This study aimed to explore the effect of FM substitution by defatted Tenebrio molitor larvae meal (dTM) on the response of European seabass to an acute stress challenge. An FM-based diet was used as a control and two other isoproteic/isoenergetic diets were formulated to replace 50 and 100% of FM by dTM. Each diet was tested in quadruplicate groups of 15 fish (69 ± 5 g) fed until visual satiety for 16 weeks. After the feeding trial, fish were subjected to 1 min air exposure followed by 1 h of recovery before sampling. The haematological profile, plasma metabolites, and humoral immunity biomarkers, as well as hepatic oxidative stress and antioxidant capacity, were analysed. A clear response to acute stress was observed by a significant increase in haemoglobin, haematocrit, red blood cells, and almost all evaluated plasma metabolites and humoral parameters, regardless of dietary treatment. The obtained results demonstrated that partial substitution of FM by IM did not affect the stress response of seabass. However, total FM replacement increased the hepatic activity of total peroxidase and superoxide dismutase in fish fed TM100. Full article
(This article belongs to the Special Issue New Challenges in Marine Aquaculture Research)
Show Figures

Figure 1

26 pages, 3552 KiB  
Article
Morphological Study before and after Thermal Treatment of Polymer–Polymer Mixed–Matrix Membranes for Gas Separations
by Pedro Pradanos, Cenit Soto, Francisco Javier Carmona, Ángel E. Lozano, Antonio Hernández and Laura Palacio
Polymers 2024, 16(10), 1397; https://doi.org/10.3390/polym16101397 (registering DOI) - 14 May 2024
Abstract
A good integration of the polymer materials that form a mixed-matrix membrane (MMM) for gas separation is essential to reaching interesting permselective properties. In this work, a porous polymer network (PPN), obtained by combining triptycene and trifluoroacetophenone, has been used as a filler, [...] Read more.
A good integration of the polymer materials that form a mixed-matrix membrane (MMM) for gas separation is essential to reaching interesting permselective properties. In this work, a porous polymer network (PPN), obtained by combining triptycene and trifluoroacetophenone, has been used as a filler, which was blended with two o-hydroxypolyamides (HPAs) that act as polymer matrices. These polymer matrices have been thermally treated to induce a thermal rearrangement (TR) of the HPAs to polybenzoxazoles (β-TR-PBOs) through a solid-state reaction. For its structural study, various techniques have been proposed that allow us to undertake a morphological investigation into the integration of these materials. To access the internal structure of the MMMs, three different methods were used: a polishing process for the material surface, the partial dissolution of the polymer matrix, or argon plasma etching. The argon plasma technique has not only revealed its potential to visualize the internal structure of these materials; it has also been proven to allow for the transformation of their permselective properties. Force modulation and phase contrast in lift-mode techniques, along with the topographic images obtained via the tapping mode using a scanning probe microscope (SPM), have allowed us to study the distribution of the filler particles and the interaction of the polymer and the filler. The morphological information obtained via SPM, along with that of other more commonly used techniques (SEM, TGA, DSC, FTIR, WASX, gas adsorption, and permeability measurements), has allowed us to postulate the most probable structural configuration in this type of system. Full article
(This article belongs to the Special Issue Advanced Polymer Membranes for Adsorption and Separation Applications)
Show Figures

Graphical abstract

26 pages, 1928 KiB  
Review
Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches
by Ahsan Naveed, Lianne G. Eertink, Dan Wang and Feng Li
Viruses 2024, 16(5), 781; https://doi.org/10.3390/v16050781 (registering DOI) - 14 May 2024
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic [...] Read more.
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

24 pages, 3946 KiB  
Article
Papillary Thyroid Cancer Remodels the Genetic Information Processing Pathways
by Dumitru Andrei Iacobas and Sanda Iacobas
Genes 2024, 15(5), 621; https://doi.org/10.3390/genes15050621 (registering DOI) - 14 May 2024
Abstract
The genetic causes of the differentiated, highly treatable, and mostly non-fatal papillary thyroid cancer (PTC) are not yet fully understood. The mostly accepted PTC etiology blames the altered sequence or/and expression level of certain biomarker genes. However, tumor heterogeneity and the patient’s unique [...] Read more.
The genetic causes of the differentiated, highly treatable, and mostly non-fatal papillary thyroid cancer (PTC) are not yet fully understood. The mostly accepted PTC etiology blames the altered sequence or/and expression level of certain biomarker genes. However, tumor heterogeneity and the patient’s unique set of favoring factors question the fit-for-all gene biomarkers. Publicly accessible gene expression profiles of the cancer nodule and the surrounding normal tissue from a surgically removed PTC tumor were re-analyzed to determine the cancer-induced alterations of the genomic fabrics responsible for major functional pathways. Tumor data were compared with those of standard papillary and anaplastic thyroid cancer cell lines. We found that PTC regulated numerous genes associated with DNA replication, repair, and transcription. Results further indicated that changes of the gene networking in functional pathways and the homeostatic control of transcript abundances also had major contributions to the PTC phenotype occurrence. The purpose to proliferate and invade the entire gland may explain the substantial transcriptomic differences we detected between the cells of the cancer nodule and those spread in homo-cellular cultures (where they need only to survive). In conclusion, the PTC etiology should include the complex molecular mechanisms involved in the remodeling of the genetic information processing pathways. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 1822 KiB  
Article
Performance of Sustainable Green Concrete Incorporating Quarry Dust and Ferronickel Slag as Fine Aggregate
by Md Nuruzzaman, Jaydon Almeida, Md Tanvir Ehsan Amin and Prabir Kumar Sarker
Materials 2024, 17(10), 2326; https://doi.org/10.3390/ma17102326 (registering DOI) - 14 May 2024
Abstract
This paper presents a study on the combined use of two by-products, namely quarry dust (QD) and ferronickel slag (FNS), as a full substitute for natural sand to improve the greenness of concrete production. Quarry dust was used in increments of 25% to [...] Read more.
This paper presents a study on the combined use of two by-products, namely quarry dust (QD) and ferronickel slag (FNS), as a full substitute for natural sand to improve the greenness of concrete production. Quarry dust was used in increments of 25% to a maximum of 75% substitution, where nickel slag was used as the remaining proportion of fine aggregate. All the combinations of quarry dust and nickel slag were found to be compliant with AS 2758.1 and they showed notably better grading than 100% sand. In this research, standard concrete tests, such as the slump test for fresh concrete, and compression, tensile and shrinkage tests for hardened concrete, were conducted. Scanning electron microscopy and X-ray diffraction analysis were also conducted for microstructural investigation. The results concluded that the combinations of quarry dust and nickel slag in concrete as a whole substitution of sand provide similar results for these properties. Specifically, 25% quarry dust with 75% nickel slag proved to be the most promising alternative to sand, with compressive and splitting tensile strengths of 62 and 4.29 MPa, respectively, which were 16% and 20% higher than those of the control mix. Also, lower drying shrinkage was observed for this combination compared to the control mix. The higher strength is attributed to the rough texture and angular shape of both quarry dust and nickel slag providing a better mechanical interlocking. The validity of this result has also been confirmed through image analysis of micrographs from various specimens. In microstructural investigations, specimens with QD and FNS exhibited fewer voids and a more compact surface compared to the control specimen. This shows the potential for further research into the use of quarry dust and nickel slag in the production of green concrete. Full article
13 pages, 2507 KiB  
Article
Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats
by Sebastião Vieira de Morais, Gustavo Pereira Calado, Rafael Cardoso Carvalho, João Batista Santos Garcia, Thyago Moreira de Queiroz, Antonio José Cantanhede Filho, Alberto Jorge Oliveira Lopes, Maria do Socorro de Sousa Cartágenes and Gerson Ricardo de Souza Domingues
Pharmaceuticals 2024, 17(5), 630; https://doi.org/10.3390/ph17050630 (registering DOI) - 14 May 2024
Abstract
Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of [...] Read more.
Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed produce a superior effect when compared to these compounds individually, significantly enhancing therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared to treatments with each compound alone. Radiographic analyses further confirm the preservation of joint integrity and a reduction in osteoarthritic damage, highlighting the association’s efficacy in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage and fosters the production of protective cytokines. This study underscores the potential benefits of integrating natural products with pharmaceuticals in OA management and stresses the importance of further research to fully understand the mechanisms underlying the observed potentiated effects. Full article
Show Figures

Figure 1

31 pages, 2025 KiB  
Article
Combined Effects of the Visual–Acoustic Environment on Public Response in Urban Forests
by Yuxiang Lan, Yuanyang Tang, Zhanhua Liu, Xiong Yao, Zhipeng Zhu, Fan Liu, Junyi Li, Jianwen Dong and Ye Chen
Forests 2024, 15(5), 858; https://doi.org/10.3390/f15050858 (registering DOI) - 14 May 2024
Abstract
Urban forests are increasingly recognized as vital components of urban ecosystems, offering a plethora of physiological and psychological benefits to residents. However, the existing research has often focused on single dimensions of either visual or auditory experiences, overlooking the combined impact of audio–visual [...] Read more.
Urban forests are increasingly recognized as vital components of urban ecosystems, offering a plethora of physiological and psychological benefits to residents. However, the existing research has often focused on single dimensions of either visual or auditory experiences, overlooking the combined impact of audio–visual environments on public health and well-being. This study addresses this gap by examining the effects of composite audio–visual settings within three distinct types of urban forests in Fuzhou, China: mountain, mountain–water, and waterfront forests. Through field surveys and quantitative analysis at 24 sample sites, we assessed visual landscape elements, soundscapes, physiological indicators (e.g., heart rate, skin conductance), and psychological responses (e.g., spiritual vitality, stress relief, emotional arousal, attention recovery) among 77 participants. Our findings reveal that different forest types exert varying influences on visitors’ physiology and psychology, with waterfront forests generally promoting relaxation and mountain–water forests inducing a higher degree of tension. Specific audio–visual elements, such as plant, water scenes, and natural sounds, positively affect psychological restoration, whereas urban noise is associated with increased physiological stress indicators. In conclusion, the integrated effects of audio–visual landscapes significantly shape the multisensory experiences of the public in urban forests, underscoring the importance of optimal design that incorporates natural elements to create restorative environments beneficial to the health and well-being of urban residents. These insights not only contribute to the scientific understanding of urban forest impact but also inform the design and management of urban green spaces for enhanced public health outcomes. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop