Density functional theory investigation of titanium-tungsten superlattices: Structure and mechanical properties

Sven P. Rudin
Phys. Rev. B 86, 184104 – Published 9 November 2012

Abstract

Titanium (Ti) exhibits the body-centered crystal structure only at high temperatures. The temperature range of this so-called β-Ti phase can be expanded by alloying Ti with tungsten (W). Rather than placing the W atoms in the β-Ti crystal at random, this work applies density functional theory calculations to explore the consequences of an orderly placement in Ti/W superlattice structures. In all examples the W layer remains bcc-like. The stacking direction of the Ti/W superlattice drives the core of the Ti layer toward either a locally hcp- or ω-Ti structure, though the latter is mechanically unstable for all but the thinnest W layers. The relative thicknesses of the W and Ti layers as well as the stacking direction influence the formation energies, which consistently fall within a range corresponding roughly to room temperature. Superlattices allow a choice of stacking direction and layer thicknesses, both strongly influencing the material's strength, though not improving the mechanical properties as observed for Ti with randomly placed W particles.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 10 September 2012

DOI:https://doi.org/10.1103/PhysRevB.86.184104

©2012 American Physical Society

Authors & Affiliations

Sven P. Rudin

  • Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 18 — 1 November 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×