ExLibris header image
SFX Logo
Title: Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization
Source:

Nature Communications [2041-1723] yr:2012


Collapse list of basic services Basic
Full text
Full text available via Nature
GO
Full text available via PubMed Central
GO
Document delivery
Request document via Library/Bibliothek GO
Users interested in this article also expressed an interest in the following:
1. Lei, Thibaut a. "Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures." Nature communications 4.1 (2013): 1378-1378. Link to Full Text for this item Link to SFX for this item
2. Koyama, T. "Current-induced magnetic domain wall motion below intrinsic threshold triggered by Walker breakdown." Nature nanotechnology 7.10 (2012): 635-639. Link to SFX for this item
3. Parkin, S. "Highly Efficient In-Line Magnetic Domain Wall Injector." Nano letters 15.2 (2015): 4294967295-841. Link to Full Text for this item Link to SFX for this item
4. Yu, X.Z. Z. "Skyrmion flow near room temperature in an ultralow current density." Nature communications 3.8 (2012): 988-988. Link to Full Text for this item Link to SFX for this item
5. Dean, M. P. M. S. "Spin excitations in a single La2CuO4 layer." Nature Materials 11.10 (2012): 850-854. Link to SFX for this item
6. Hubert, O. "Energetical and multiscale approaches for the definition of an equivalent stress for magneto-elastic couplings." Journal of magnetism and magnetic materials 323.13 (2011): 1766-1781. Link to SFX for this item
7. Matsuura, H. "SHG microscope observations of domain structures of multiferroic BiFeO 3 Single crystal." Ferroelectrics 410.1 (2011): 59-62. Link to SFX for this item
8. Miron, I. "Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer." Nature Materials 9.3 (2010): 230-234. Link to SFX for this item
9. Thomas, L. "Observation of injection and pinning of domain walls in magnetic nanowires using photoemission electron microscopy." Applied physics letters 87.26 (2005): 262501-. Link to Full Text for this item Link to SFX for this item
10. Chappert, C. "The emergence of spin electronics in data storage." Nature materials 6.11 (2007): 813-823. Link to Full Text for this item Link to SFX for this item
11. Zhu, J L. "Structural stability of multiferroic BiFeO3." High pressure research 30.2 (2010): 265-272. Link to SFX for this item
12. Miron, Ioan M. "Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection." Nature 476.7359 (2011): 189-193. Link to Full Text for this item Link to SFX for this item
13. Yu, X. "Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe." Nature Materials 10.2 (2011): 106-109. Link to SFX for this item
14. Ganapathi, M. "Affix grammar driven code generation." ACM transactions on programming languages and systems 7.4 (1985): 560-599. Link to SFX for this item
15. Wolf, S A A. "Spintronics: A spin-based electronics vision for the future." Science 294.5546 (2001): 1488-1495. Link to SFX for this item
16. Wuttig, M. "Phase-change materials for rewriteable data storage." Nature materials 6.11 (2007): 824-832. Link to Full Text for this item Link to SFX for this item
17. Awschalom, David D. "Challenges for semiconductor spintronics." Nature physics 3.3 (2007): 153-159. Link to Full Text for this item Link to SFX for this item
18. Pena, V. "Giant magnetoresistance in ferromagnet/superconductor superlattices." Physical review letters 94.5 (2005): 57002-2475. Link to Full Text for this item Link to SFX for this item
19. Finocchio, R.. "A strategy for the design of skyrmion racetrack memories." Scientific Reports 4.1 (2014): 6784-6784. Link to Full Text for this item Link to SFX for this item
20. Parkin, S. "Memory on the racetrack." Nature nanotechnology 10.3 (2015): 195-198. Link to SFX for this item
View More...
View Less...
Select All Clear All

Expand list of advanced services Advanced