Skip to main content
Log in

Polyvinylidene fluoride membrane modified by tea polyphenol for dye removal

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) membranes were surface-modified via a simple coating method for improvement of the hydrophilicity performance. In this work, TP/PEI/PVDF modified membrane was successfully prepared by using tea polyphenol as a multifunctional coating. The physicochemical properties of membranes were characterized by Fourier transform infrared spectroscopy, X-ray energy-dispersive spectrometry, X-ray photoelectron spectroscopy scanning electron microscopy and atomic force microscopy. The water contact angle, pure water flux and methylene blue rejection ratio of membranes were investigated in detail. Compared with the pristine membrane, the water contact angle of the modified membrane decreased to 48.8°, and the rejection ratios were increased to 95.2% when the modified membrane was used to separate methylene blue. In addition, the modified membrane showed excellent antifouling performance in the experiment, and the flux recovery ratio still reached 84.6% after three fouling/washing cycles. In the oxidation experiment, the modified membranes were immersed in KMnO4 solution for 6 h, and the results show that the water contact angle, pure water flux and methylene blue rejection of the modified membranes only have changed slightly. Therefore, this study could have a great potential for widening the application of membranes in the treatment of dye wastewater containing oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84

    Article  CAS  Google Scholar 

  2. Zhu Y, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 6:101–121

    Article  CAS  Google Scholar 

  3. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  Google Scholar 

  4. Peters T (2010) Membrane technology for water treatment. Chem Eng Technol 33:1233–1240

    Article  CAS  Google Scholar 

  5. Cheryan M, Rajagopalan N (1998) Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci 151:13–28

    Article  CAS  Google Scholar 

  6. Sun H, Yang X, Zhang Y, Cheng X, Xu Y, Bai Y (2018) Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending. J Membr Sci 563:22–30

    Article  CAS  Google Scholar 

  7. Wu H, Mansouri J, Chen V (2013) Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes. J Membr Sci 433:135–151

    Article  CAS  Google Scholar 

  8. Chang Q, Jian-Er Z, Wang Y (2014) Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. J Membr Sci 456:128–133

    Article  CAS  Google Scholar 

  9. Zhang Y, Zhu X, Liu D, Wang J, Li J, Jang L (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed 53:856–860

    Article  CAS  Google Scholar 

  10. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    Article  CAS  Google Scholar 

  11. Xu H, Bao S, Gong L, Ma R, Pan L, Li Y (2018) Superhydrophobic engineering materials provide a rapid and simple route for highly efficient self-driven crude oil spill cleanup. RSC Adv 8:38363–38369

    Article  CAS  Google Scholar 

  12. Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25:2071–2076

    Article  CAS  Google Scholar 

  13. Platt S, Nyström M (2007) Amido black staining of ultrafiltration membranes fouled with BSA. Desalination 214:177–192

    Article  CAS  Google Scholar 

  14. Arkhangelsky E, Kuzmenko D, Gitis V (2007) Impact of chemical cleaning on properties and functioning of polyethersulfone membranes. J Membr Sci 305:176–184

    Article  CAS  Google Scholar 

  15. Madaeni SS, Sharifnia S, Moradi GR (2013) Chemical cleaning of microfiltration membranes fouled by whey. J Chin Chem Soc-taip 48:179–191

    Article  Google Scholar 

  16. Madaeni SS, Mansourpanah Y (2001) Chemical cleaning of reverse osmosis membrane fouled by whey. Desalination 161:13–24

    Article  CAS  Google Scholar 

  17. Yu T, Meng L, Zhao QB, Shi Y, Hu HY, Lu Y (2017) Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation. Water Res 113:1–10

    Article  CAS  Google Scholar 

  18. Hashim NA, Liu Y, Li K (2011) Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem Eng Sci 66:1565–1575

    Article  CAS  Google Scholar 

  19. Gao F, Wang J, Zhang H, Zhang Y, Hang MA (2016) Effects of sodium hypochlorite on structural/surface characteristics, filtration performance and fouling behaviors of PVDF membranes. J Membr Sci 519:22–31

    Article  CAS  Google Scholar 

  20. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  21. Zhang Y, Sun H, Sadam H, Liu Y, Shao L (2019) Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chem Eng J 371:535–543

    Article  CAS  Google Scholar 

  22. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115

    Article  CAS  Google Scholar 

  23. Sun H, Zhang Y, Hussain S (2019) Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. J Membr Sci 582:1–8

    Article  CAS  Google Scholar 

  24. Yang X, Yan L, Wu Y, Liu Y, Shao L (2019) Biomimetic hydrophilization engineering on membrane surface for highly-efficient water purification. J Membr Sci 589:117223

    Article  CAS  Google Scholar 

  25. Barrett DG, Sileika TS, Messersmith PB (2014) Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings. Chem Commun 50:7265–7268

    Article  CAS  Google Scholar 

  26. Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5:603–607

    Article  CAS  Google Scholar 

  27. Wang Y, Shi ZX, Yin J (2011) facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. Acs Appl Mater Interfaces 3:1127–1133

    Article  CAS  Google Scholar 

  28. Mujeeb Rahman P, Abdul Mujeeb VM, Muraleedharan K (2017) Chitosan–green tea extract powder composite pouches for extending the shelf life of raw meat. Polym Bull 74:3399–3419

    Article  CAS  Google Scholar 

  29. Chakrabarty T, Pérez-Manríquez Liliana, Neelakanda P, Peinemann KV (2017) Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes. Sep Purif Technol 184:188–194

    Article  CAS  Google Scholar 

  30. Lim MY, Choi YS, Kim J, Kim K, Shin H, Kim JJ, Shin DM, Lee JC (2017) Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. J Membr Sci 521:1–9

    Article  CAS  Google Scholar 

  31. Qiu WZ, Du Y, Lv Y, Yang HC, Xu ZK (2017) Codeposition of catechol-polyethyleneimine followed by interfacial polymerization for nanofiltration membranes with enhanced stability. J Appl Polym Sci 134:45422

    Article  CAS  Google Scholar 

  32. Zhang X, Ren PF, Yang HC, Wan LS, Xu ZK (2016) Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Appl Surf Sci 360:291–297

    Article  CAS  Google Scholar 

  33. Wang P, Tan KL, Kang ET, Neoh KG (2001) Synthesis, characterization and anti-fouling properties of poly(ethylene glycol) grafted poly(vinylidene fluoride) copolymer membranes. J Mater Chem 11:783–795

    Article  CAS  Google Scholar 

  34. Cui Z, Hassankiadeh NT, Lee SY, Lee JM, Woo KT, Sanguineti A (2013) Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. J Membr Sci 444:223–236

    Article  CAS  Google Scholar 

  35. Madaeni SS, Zinadini S, Vatanpour V (2013) Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep Purif Technol 111:98–107

    Article  CAS  Google Scholar 

  36. Arkhangelsky E, Kuzmenko D, Gitis NV, Vinogradov M, Kuiry S, Gitis V (2007) Hypochlorite cleaning causes degradation of polymer membranes. Tribol Lett 28:109–116

    Article  CAS  Google Scholar 

  37. Milardović S, Iveković D, Grabarić BS (2006) A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68:175–180

    Article  CAS  Google Scholar 

  38. Wang KY, Chung TS, Gryta M (2008) Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem Eng Sci 63:2587–2594

    Article  CAS  Google Scholar 

  39. Teyssedre G, Bernes A, Lacabanne C (1993) Influence of the crystalline phase on the molecular mobility of PVDF. J Polym Sci Polym Phys 31:2027–2034

    Article  CAS  Google Scholar 

  40. Huan S, Bai L, Cheng W, Han G (2016) Manufacture of electrospun all-aqueous poly(vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure. Polymer 92:25–35

    Article  CAS  Google Scholar 

  41. Luo H, Gu C, Zheng W, Dai F, Wang X, Zheng Z (2015) Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. Rsc Adv 5:13470–13477

    Article  CAS  Google Scholar 

  42. Yang HC, Wu MB, Li YJ, Chen YF, Wan LS, Xu ZK (2016) Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. J Appl Polym Sci 133:43792

    Google Scholar 

  43. Gaudichet-Maurin E, Thominette F (2006) Ageing of polysulfone ultrafiltration membranes in contact with bleach solutions. J Membr Sci 282:198–204

    Article  CAS  Google Scholar 

  44. Han B, Zhang D, Shao Z, Kong L, Lv S (2013) Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination 311:80–89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang.

Ethics declarations

Conflicts of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, Y., Li, Y. et al. Polyvinylidene fluoride membrane modified by tea polyphenol for dye removal. J Mater Sci 55, 389–403 (2020). https://doi.org/10.1007/s10853-019-03966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03966-y

Navigation