Skip to main content

Advertisement

Log in

Distance from rocky shores affects infaunal recolonization in a subtropical tidal flat

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hard bottoms can negatively affect the surrounding infauna by hosting predatory fauna and modifying local hydrodynamics and sedimentation rates. Considering that these effects depend on the distance to the hard bottoms, we expected that the infaunal structure and recolonization would change accordingly. We assessed whether the distance from a rocky shore alters infaunal recolonization in a subtropical tidal flat. Sediment was defaunated on sites near and far from a rocky shore and the subsequent faunal recolonization was followed for 40 days. The sites near and far from the rocky shore displayed different assemblage structures, which we attributed to local variation in hydrodynamic conditions. Both the total infaunal abundance and the abundance of the dominant species recovered faster at the near site. We indicate that changes in infaunal recolonization at varying distances from natural rocky shores are primarily driven by the availability of adults. Infaunal recovery took less than 2 weeks, but recolonization rates increased near the rocky shore, as a function of its naturally variable assemblage structure and relatively lower species richness and abundances. We suggest that models of infaunal distribution and recolonization should incorporate landscape features such as the presence and distance from rocky bottoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M. J., 2005. PERMANOVA: A FORTRAN Computer Program for Permutational Multivariate Analysis of Variance. Department of Statistics, University of Auckland, Auckland.

    Google Scholar 

  • Barros, F., 2005. Evaluating the importance of predation on subtidal benthic assemblages in sandy habitats around rocky reefs. Acta Oecologica 27: 211–223.

    Article  Google Scholar 

  • Barros, F., A. J. Underwood & M. Lindegarth, 2001. The influence of rocky reefs on structure of benthic macrofauna in nearby soft-sediments. Estuarine, Coastal and Shelf Science 52: 191–199.

    Article  CAS  Google Scholar 

  • Barros, F., A. J. Underwood & P. Archambault, 2004. The influence of troughs and crests of ripple marks on the structure of subtidal benthic assemblages around rocky reefs. Estuarine, Coastal and Shelf Science 60: 781–790.

    Article  Google Scholar 

  • Bolam, S. G., P. Whomersley & M. Schratzberger, 2004. Macrofaunal recolonization on intertidal mudflats: effect of sediment organic and sand content. Journal of Experimental Marine Biology and Ecology 306: 157–180.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth.

    Google Scholar 

  • Cusson, M. & E. Bourget, 1997. Influence of topographic heterogeneity and spatial scales on the structure of the neighbouring intertidal endobenthic macrofaunal community. Marine Ecology Progress Series 150: 181–193.

    Article  Google Scholar 

  • Davis, N., G. R. VanBlaricom & P. K. Dayton, 1982. Man-made structures on marine sediments: effects on adjacent benthic communities. Marine Biology 70: 295–303.

    Article  Google Scholar 

  • DeWitte, T. H., 1987. Microhabitat selection and colonization rates of a benthic amphipod. Marine Ecology Progress Series 36: 237–250.

    Article  Google Scholar 

  • Eklöf, J. S., T. van der Heide, S. Donadi, E. M. van der Zee, R. O’Hara & B. K. Eriksson, 2011. Habitat-mediated facilitation and counteracting ecosystem engineering interactively influence ecosystem responses to disturbance. PLoS ONE 6: e23229.

    Article  Google Scholar 

  • Ford, R. B., S. F. Thrush & P. K. Probert, 1999. Macrobenthic colonisation of disturbances on an intertidal sandflat: the influence of season and buried algae. Marine Ecology Progress Series 191: 163–174.

    Article  Google Scholar 

  • Galván, D. E., A. M. Parma & O. O. Iribarne, 2008. Influence of predatory reef fishes on the spatial distribution of Munida gregaria (= M. subrugosa) (Crustacea; Galatheidae) in shallow Patagonian soft bottoms. Journal of Experimental Marine Biology and Ecology 354: 93–100.

    Article  Google Scholar 

  • George, S., B. Jon, M. Schratzberger & P. Whomersley, 2010. Macrofaunal recolonisation following the intertidal placement of fine-grained dredged material. Environmental Monitoring and Assessment 168: 499–510.

    Article  Google Scholar 

  • Gern, F. R. & P. D. C. Lana, 2013. Reciprocal experimental transplantations to assess effects of organic enrichment on the recolonization of benthic macrofauna in a subtropical estuary. Marine Pollution Bulletin 67: 107–120.

    Article  CAS  Google Scholar 

  • Gusmao-Junior, J. B. L. & P. C. Lana, 2015. Spatial variability of the infauna adjacent to intertidal rocky shores in a subtropical estuary. Hydrobiologia 743: 53–64.

    Article  CAS  Google Scholar 

  • Gusmao, J. B., M. R. Lee, I. MacDonald, N. C. Ory, J. Sellanes, L. Watling & M. Thiel, 2018. No reef-associated gradient in the infaunal communities of Rapa Nui (Easter Island)—Are oceanic waves more important than reef predators? Estuarine, Coastal and Shelf Science Elsevier 210: 123–131.

    Article  Google Scholar 

  • Gutiérrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  • Johnston, E. L. & M. J. Keough, 2005. Reduction of pollution impacts through the control of toxicant release rate must be site- and season-specific. Journal of Experimental Marine Biology and Ecology 320: 9–33.

    Article  Google Scholar 

  • Jumars, P. A. & A. R. M. Nowell, 1984. Fluid and sediment dynamic effects on marine benthic community structure. American Zoologist 24: 45–55.

    Article  Google Scholar 

  • Kim, S., 1992. The role of drift kelp in the population ecology of a Diopatra ornata Moore (Polychaeta: Onuphidae) ecotone. Journal of Experimental Marine Biology and Ecology 156: 253–272.

    Article  Google Scholar 

  • Krumhansl, K. A. & R. E. Scheibling, 2012. Production and fate of kelp detritus. Marine Ecology Progress Series 467: 281–302.

    Article  Google Scholar 

  • Langlois, T. J., M. J. Anderson & R. C. Babcock, 2005. Reef-associated predators influence adjacent soft-sediment communities. Ecology 86: 1508–1519.

    Article  Google Scholar 

  • Langlois, T. J., M. J. Anderson & R. C. Babcock, 2006a. Inconsistent effects of reefs on different size classes of macrofauna in adjacent sand habitats. Journal of Experimental Marine Biology and Ecology 334: 269–282.

    Article  Google Scholar 

  • Langlois, T. J., M. J. Anderson, R. C. Babcock & S. Kato, 2006b. Marine reserves demonstrate trophic interactions across habitats. Oecologia 147: 134–140.

    Article  Google Scholar 

  • Lu, L. & R. S. S. Wu, 2000. An experimental study on recolonization and succession of marine macrobenthos in defaunated sediment. Marine Biology 136: 291–302.

    Article  Google Scholar 

  • Melo, G. A. S., 1996. Manual de identificação dos Brachyura (Caranguejos e Siris) do litoral brasileiro. Editora Plêiade/Fapesp, São Paulo.

    Google Scholar 

  • Miller, A. D., S. H. Roxburgh & K. Shea, 2011. How frequency and intensity shape diversity-disturbance relationships. Proceedings of the National Academy of Sciences 108: 5643–5648.

    Article  CAS  Google Scholar 

  • Negrello Filho, O. A., A. J. Underwood & M. G. Chapman, 2006. Recolonization of infauna on a tidal flat: an experimental analysis of modes of dispersal. Journal of Experimental Marine Biology and Ecology 328: 240–250.

    Article  Google Scholar 

  • Norkko, A., A. Villnäs, J. Norkko, S. Valanko & C. Pilditch, 2013. Size matters: implications of the loss of large individuals for ecosystem function. Scientific Reports 3: 2646.

    Article  Google Scholar 

  • Nowell, A. & P. Jumars, 1984. Flow environments of aquatic benthos. Annual Review of Ecology, Evolution and Systematics 15: 303–328.

    Article  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, & H. Wagner, 2009. vegan: Community Ecology Package. R package version 2.5-2 [available on internet at https://CRAN.R-project.org/package=vegan].

  • Posey, M. H. & W. G. Ambrose Jr., 1994. Effects of proximity to an offshore hard-bottom reef on infaunal abundances. Marine Biology 118: 745–753.

    Article  Google Scholar 

  • Posey, M. H., F. E. Vose, & W. J. Lindberg, 1992. Short-term responses of benthic infauna to the establishment of an artificial reef. In L. Cahoon (ed.), Diving for Science 1992, Proceedings of the American Academy of Underwater Sciences 12th Annual Scientific Diving Symposium. American Academy of Underwater Sciences (AAUS): 125–131.

  • Qian, P. Y., 1999. Larval settlement of polychaetes. Hydrobiologia 402: 239–253.

    Article  CAS  Google Scholar 

  • Quinn, G. P., & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York.

  • R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at http://www.r-project.org].

  • Rosa, L. C. & C. A. Borzone, 2008. Uma abordagem morfodinâmica na caracterização fisica das praias estuarinas da Baia de Paranaguá, sul do Brasil. Revista Brasileira de Geociências 38: 237–245.

    Article  Google Scholar 

  • Rosenberg, R., 2001. Marine benthic faunal successional stages and related sedimentary activity. Scientia Marina 65: 107–119.

    Article  Google Scholar 

  • Sandrini-Neto, L., & M. G. Camargo, 2010. GAD: an R package for ANOVA designs from general principles [available on internet at http://cran.r-project.org/web/packages/GAD].

  • Sandrini-Neto, L. & P. D. C. Lana, 2014. Does mollusc shell debris determine patterns of macrofaunal recolonisation on a tidal flat? Experimental evidence from reciprocal transplantations. Journal of Experimental Marine Biology and Ecology 452: 9–21.

    Article  Google Scholar 

  • Sepúlveda, R. D. & N. Valdivia, 2016. Localised effects of a mega-disturbance: spatiotemporal responses of intertidal sandy shore communities to the 2010 Chilean earthquake. PLoS ONE 11: e0157910.

    Article  Google Scholar 

  • Sepúlveda, R. D. & N. Valdivia, 2017. Macrobenthic community changes of intertidal sandy shores after a mega-disturbance. Estuaries and Coasts 40: 493–501.

    Article  Google Scholar 

  • Smith, C. R. & S. J. Brumsickle, 1989. The effects of patch size and substrate isolation on colonization modes and rates in an intertidal sediment. Limnology Oceanography 34(7): 1263–1277.

    Article  Google Scholar 

  • Strasser, K. M. & D. L. Felder, 1999. Settlement cues in an Atlantic coast population of the ghost shrimp Callichirus major (Crustacea: Decapoda: Thalassinidea). Marine Ecology Progress Series 183: 217–225.

    Article  Google Scholar 

  • Thrush, S. F., R. D. Pridmore, J. E. Hewitt & V. J. Cummings, 1992. Adult infauna as facilitators of colonization on intertidal sandflats. Journal of Experimental Marine Biology and Ecology 159: 253–265.

    Article  Google Scholar 

  • Thrush, S. F. & P. K. Dayton, 2002. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annual Review of Ecology and Systematics 33: 449–473.

    Article  Google Scholar 

  • Tolhurst, T. J., M. G. Chapman, A. J. Underwood & J. J. Cruz, 2012. The effects of five different defaunation methods on biogeochemical properties of intertidal sediment. Biogeosciences Discussions 9: 1377–1406.

    Article  Google Scholar 

  • van de Koppel, J., T. van der Heide, A. H. Altieri, B. K. Eriksson, T. J. Bouma, H. Olff & B. R. Silliman, 2015. Long-distance interactions regulate the structure and resilience of coastal ecosystems. Annual Review of Marine Science 7: 139–158.

    Article  Google Scholar 

  • Warnes, G. R., B. Bolker, T. Lumley, & R. C. Johnson, 2018. gmodels: Various R Programming Tools for Model Fitting. R package version 2.18.1 [available on internet at https://CRAN.R-project.org/package=gmodels].

  • Warwick, R. M. & K. R. Clarke, 1993. Increased variability as a symptom of stress in marine communities. Journal of Experimental Marine Biology and Ecology 172: 215–226.

    Article  Google Scholar 

  • Zajac, R. N., R. B. Whitlatch & S. F. Thrush, 1998. Recolonization and succession in soft-sediment infaunal communities: the spatial scale of controlling factors. Hydrobiologia 375(376): 227–240.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Federal University of Paraná (UFPR) and the Coordination for the Improvement of Higher Education Personnel (CAPES). We thank all the graduate and undergraduate students for helping in field work and sample processing. We also thank Mauricio Camargo and Rodolfo Elias for reviewing earlier drafts of this manuscript, and Veronica Oliveira for helping in the identification of polychaete species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao Bosco Gusmao.

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusmao, J.B., Sandrini-Neto, L. & Lana, P. Distance from rocky shores affects infaunal recolonization in a subtropical tidal flat. Hydrobiologia 835, 193–204 (2019). https://doi.org/10.1007/s10750-019-3938-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3938-3

Keywords

Navigation