Skip to main content

Advertisement

Log in

Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms

  • Published:
Computing Aims and scope Submit manuscript

Abstract

This study addresses the multi-objective multi-mode resource-constrained project scheduling problem with payment planning where the activities can be done through one of the possible modes and the objectives are to maximize the net present value and minimize the completion time concurrently. Moreover, renewable resources including manpower, machinery, and equipment as well as non-renewable ones such as consumable resources and budget are considered to make the model closer to the real-world. To this end, a non-linear programming model is proposed to formulate the problem based on the suggested assumptions. To validate the model, several random instances are designed and solved by GAMS-BARON solver applying the ε-constraint method. For the high NP-hardness of the problem, we develop two metaheuristics of non-dominated sorting genetic algorithm II and multi-objective simulated annealing algorithm to solve the problem. Finally, the performances of the proposed solution techniques are evaluated using some well-known efficient criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aboutalebi R, Najafi A, Ghorashi B (2012) Solving multi-mode resource-constrained project scheduling problem using two multi objective evolutionary algorithms. Afr J Bus Manag 6(11):4057–4065

    Article  Google Scholar 

  2. Assunção WKG, Colanzi TE, Vergilio SR, Pozo ATR (2013) Generating integration test orders for aspect oriented software with multi-objective algorithms. Revista de Informática Teórica e Aplicada 20(2):301–327

    Article  Google Scholar 

  3. Babaee Tirkolaee E, Alinaghian M, Bakhshi Sasi M, Seyyed Esfahani MM (2016) Solving a robust capacitated arc routing problem using a hybrid simulated annealing algorithm: a waste collection application. J Ind Eng Manag Stud 3(1):61–76

    Google Scholar 

  4. Bui LT, Barlow M, Abbass HA (2009) A multi-objective risk-based framework for mission capability planning. New Math Nat Comput 5(02):459–485

    Article  MATH  Google Scholar 

  5. Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classification, models, and methods. Eur J Oper Res 112(1):3–41

    Article  MATH  Google Scholar 

  6. Chen WN, Zhang J (2012) Scheduling multi-mode projects under uncertainty to optimize cash flows: a Monte Carlo ant colony system approach. J Comput Sci Technol 27(5):950–965

    Article  MATH  Google Scholar 

  7. Chicano F, Luna F, Nebro AJ, Alba E (2011) Using multi-objective metaheuristics to solve the software project scheduling problem. In: Proceedings of the 13th annual conference on genetic and evolutionary computation. ACM, pp 1915–1922

  8. Cho SH, Eppinger SD (2005) A simulation-based process model for managing complex design projects. IEEE Trans Eng Manag 52(3):316–328

    Article  Google Scholar 

  9. Dayanand N, Padman R (1997) On modelling payments in projects. J Oper Res Soc 48(9):906–918

    Article  MATH  Google Scholar 

  10. Dayanand N, Padman R (2001) A two stage search heuristic for scheduling payments in projects. Ann Oper Res 102(1–4):197–220

    Article  MathSciNet  MATH  Google Scholar 

  11. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: PPSN, vol 1917, pp 849–858‏

  12. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  13. De Reyck B, Leus R (2008) R&D project scheduling when activities may fail. IIE Trans 40(4):367–384

    Article  Google Scholar 

  14. Ehrgott M, Gandibleux X (2003) Multi-objective combinatorial optimization—theory, methodology, and applications. In: Gandibleux X (ed) Multiple criteria optimization: state of the art annotated bibliographic surveys. Springer, New York, pp 369–444

    Chapter  MATH  Google Scholar 

  15. Geiger MJ (2017) A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem. Eur J Oper Res 256(3):729–741

    Article  MathSciNet  MATH  Google Scholar 

  16. Glover FW, Kochenberger GA (eds) (2005) Handbook of metaheuristics, vol 57. Springer, New York

    MATH  Google Scholar 

  17. Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207:1–14

    Article  MathSciNet  MATH  Google Scholar 

  18. He Z, Xu Y (2008) Multi-mode project payment scheduling problems with bonus–penalty structure. Eur J Oper Res 189(3):1191–1207

    Article  MATH  Google Scholar 

  19. He Z, Wang N, Jia T, Xu Y (2009) Simulated annealing and tabu search for multi-mode project payment scheduling. Eur J Oper Res 198(3):688–696

    Article  MATH  Google Scholar 

  20. Herroelen W, Van Dommelen P, Demeulemeester E (1997) Project networks with discounted cash flows: a guided tour through recent developments. Eur J Oper Res 100:97–121

    Article  MATH  Google Scholar 

  21. Hosseini ZS, Pour JH, Roghanian E (2014) A bi-objective pre-emption multi-mode resource-constrained project scheduling problem with due dates in the activities. J Optim Ind Eng 15:15–25

    Google Scholar 

  22. Icmeli O, Erenguc SS (1994) A tabu search procedure for the resource-constrained project scheduling problem with discounted cash flows. Comput Oper Res 21(8):841–853

    Article  MATH  Google Scholar 

  23. Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174:23–37

    Article  MATH  Google Scholar 

  24. Kubotani H, Yoshimura K (2003) Performance evaluation of acceptance probability functions for multi-objective SA. Comput Oper Res 30(3):427–442

    Article  MathSciNet  MATH  Google Scholar 

  25. Küçüksayacıgil F, Ulusoy G (2018) A hybrid genetic algorithm application for a bi-objective, multi-project, multi-mode, resource-constrained project scheduling problem. Sabanci University. http://research.sabanciuniv.edu/34996. Accessed 2 Dec 2018

  26. Leyman P, Vanhoucke M (2016) Payment models and net present value optimization for resource-constrained project scheduling. Comput Ind Eng 91:139–153

    Article  Google Scholar 

  27. Lu S, Wang S, Zhang Y (2016) A note on the weight of inverse complexity in improved hybrid genetic algorithm. J Med Syst 40(6):1

    Article  Google Scholar 

  28. Mika M, Waligora G, Węglarz J (2005) Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. Eur J Oper Res 164(3):639–668

    Article  MathSciNet  MATH  Google Scholar 

  29. Minku LL, Sudholt D, Yao X (2012) Evolutionary algorithms for the project scheduling problem: runtime analysis and improved design. In: Proceedings of the 14th annual conference on genetic and evolutionary computation. ACM, pp 1221–1228‏

  30. Möhring RH (1984) Minimizing costs of resource requirements in project networks subject to a fixed completion time. Oper Res 32(1):89–120

    Article  MATH  Google Scholar 

  31. Nabipoor Afruzi E, Aghaie A, Najafi A (2018) Robust optimization for the resource constrained multi-project scheduling problem with uncertain activity durations. Scientia Iranica. https://doi.org/10.24200/sci.2018.20801

    Article  Google Scholar 

  32. Nam D, Park CH (2000) Multiobjective simulated annealing: a comparative study to evolutionary algorithms. Int J Fuzzy Syst 2(2):87–97

    Google Scholar 

  33. Özdamar L, Dündar H (1997) A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows. Comput Oper Res 24(12):1187–1200

    Article  MATH  Google Scholar 

  34. Özdamar L, Ulusoy G, Bayyigit M (1998) A heuristic treatment of tardiness and net present value criteria in resource-constrained project scheduling. Int J Phys Distrib Logist Manag 28(9/10):805–824

    Article  Google Scholar 

  35. Oztemel E, Selam AS (2017) Bees algorithm for multi-mode, resource-constrained project scheduling in molding industry. Comput Ind Eng 1112:187–196

    Article  Google Scholar 

  36. Russell AH (1970) Cash flows in networks. Manag Sci 16(5):357–373

    Article  MATH  Google Scholar 

  37. Sebt MH, Afshar MR, Alipour Y (2017) Hybridization of genetic algorithm and fully informed particle swarm for solving the multi-mode resource-constrained project scheduling problem. Eng Optim 49(3):513–530

    Article  MathSciNet  Google Scholar 

  38. Seifi M, Tavakkoli-Moghaddam R (2008) A new bi-objective model for a multi-mode resource-constrained project scheduling problem with discounted cash flows and four payment models. Int J Eng Trans A Basic 21(4):347–360

    Google Scholar 

  39. Sprecher A, Hartmann S, Drexl A (1997) An exact algorithm for project scheduling with multiple modes. OR Spektrum 19:195–203

    Article  MathSciNet  MATH  Google Scholar 

  40. Srinivas N, Deb K (1994) Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  41. Szmerekovsky JG (2005) The impact of contractor behavior on the client’s payment-scheduling problem. Manag Sci 51(4):629–640

    Article  MATH  Google Scholar 

  42. Tirkolaee EB, Hosseinabadi AAR, Soltani M, Sangaiah AK, Wang J (2018) A hybrid genetic algorithm for multi-trip green capacitated arc routing problem in the scope of urban services. Sustainability (2071–1050) 10(5):1–21

    Google Scholar 

  43. Tirkolaee EB, Mahdavi I, Esfahani MMS (2018) A robust periodic capacitated arc routing problem for urban waste collection considering drivers and crew’s working time. Waste Manag 76:138–146

    Article  Google Scholar 

  44. Ulusoy G, Cebelli S (2000) An equitable approach to the payment scheduling problem in project management. Eur J Oper Res 127(2):262–278

    Article  MATH  Google Scholar 

  45. Ulusoy G, Sivrikaya-Şerifoğlu F, Şahin Ş (2001) Four payment models for the multi-mode resource-constrained project scheduling problem with discounted cash flows. Ann Oper Res 102(1–4):237–261

    Article  MathSciNet  MATH  Google Scholar 

  46. Varadharajan TK, Rajendran C (2005) A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur J Oper Res 167(3):772–795

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang S, Yang M, Li J, Wu X, Wang H, Liu B, Dong Z, Zhang Y (2017) Texture analysis method based on fractional Fourier entropy and fitness-scaling adaptive genetic algorithm for detecting left-sided and right-sided sensorineural hearing loss. Fundamenta Informaticae 151(1–4):505–521

    Article  MathSciNet  Google Scholar 

  48. Xiong J, Yang KW, Liu J, Zhao QS, Chen YW (2012) A two-stage preference-based evolutionary multi-objective approach for capability planning problems. Knowl Based Syst 31:128–139

    Article  Google Scholar 

  49. Zitzler E, Deb K, Thiele L (2000) Comparison of multi-objective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by International Scientific and Technological Cooperation Project of Dongguan (2016508102011), in part by Science and Technology Planning Project of Guangdong Province (2016A020210142) and in part by Guangdong provincial key platform and major scientific research projects (2017GXJK174).

Funding

Funding was provided by International Scientific and Techological Cooperation Project of Dongguan (Grant No. 2016508102011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirkolaee, E.B., Goli, A., Hematian, M. et al. Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms. Computing 101, 547–570 (2019). https://doi.org/10.1007/s00607-018-00693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-018-00693-1

Keywords

Mathematics Subject Classification

Navigation