Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
22 pages, 8841 KiB  
Article
Fused Filament Fabrication of Polyethylene/Graphene Composites for In-Space Manufacturing
by Susanna Laurenzi, Federica Zaccardi, Elisa Toto, Maria Gabriella Santonicola, Sabina Botti and Tanya Scalia
Materials 2024, 17(8), 1888; https://doi.org/10.3390/ma17081888 (registering DOI) - 19 Apr 2024
Abstract
Graphene-based composite materials are highly sought after for space applications due to their ability to encompass various properties, such as electrical conductivity, thermal resistance, and radiation shielding. This versatility allows for the creation of multifunctional components that can serve various purposes in space. [...] Read more.
Graphene-based composite materials are highly sought after for space applications due to their ability to encompass various properties, such as electrical conductivity, thermal resistance, and radiation shielding. This versatility allows for the creation of multifunctional components that can serve various purposes in space. Three-dimensional (3D) printing of composite materials in space offers a versatile and efficient means of manufacturing components, tools, and structures that are tailored to the unique challenges and requirements of space missions. In this work, we aim to develop 3D-printed composites made of medium-density polyethylene (MDPE) matrix and exfoliated graphene nanoplatelets (xGnP) as filler, using fused filament fabrication (FFF). Our research focuses on the challenges associated with the FFF process for fabricating MDPE/xGnP materials, particularly by optimizing filament extrusion and assessing the resulting material properties and space environmental compatibility. Firstly, we optimize the extrusion process, and use the MDPE/xGnP filaments to fabricate 3D-printed samples after defining the FFF parameters. We employ differential scanning calorimetry (DSC) to assess the melting properties and crystallization degree of the extruded filaments and 3D-printed samples, providing insights into the relationship between these properties and the characteristics of the initial powders. Electrical and tensile tests are carried out to evaluate the material properties after successfully mitigating challenges, such as warping and inadequate adhesion, to build plates during the printing process. Finally, we subject the 3D-printed composites to outgassing tests under exposure to the AM0 solar spectrum to evaluate their space environmental suitability. The results of this work demonstrate the capability of the FFF-based process to efficiently manufacture components made of MDPE/xGnP composites, providing optimized parameters for their potential in-space fabrication. Full article
Show Figures

Figure 1

14 pages, 5334 KiB  
Article
Enhancing Mechanical and Thermal Properties of 3D-Printed Samples Using Mica-Epoxy Acrylate Resin Composites—Via Digital Light Processing (DLP)
by Velmurugan Senthooran, Zixiang Weng and Lixin Wu
Polymers 2024, 16(8), 1148; https://doi.org/10.3390/polym16081148 (registering DOI) - 19 Apr 2024
Abstract
Digital light processing (DLP) techniques are widely employed in various engineering and design fields, particularly additive manufacturing. Acrylate resins utilized in DLP processes are well known for their versatility, which enables the production of defect-free 3D-printed products with excellent mechanical properties. This study [...] Read more.
Digital light processing (DLP) techniques are widely employed in various engineering and design fields, particularly additive manufacturing. Acrylate resins utilized in DLP processes are well known for their versatility, which enables the production of defect-free 3D-printed products with excellent mechanical properties. This study aims to improve the mechanical and thermal properties of 3D-printed samples by incorporating mica as an inorganic filler at different concentrations (5%, 10%, and 15%) and optimizing the dispersion by adding a KH570 silane coupling agent. In this study, mica was introduced as a filler and combined with epoxy acrylate resin to fabricate a 3D-printed sample. Varying concentrations of mica (5%, 10%, and 15% w/w) were mixed with the epoxy acrylate resin at a concentration of 10%, demonstrating a tensile strength increase of 85% and a flexural strength increase of 132%. Additionally, thermal characteristics were analyzed using thermogravimetric analysis (TGA), and successful morphological investigations were conducted using scanning electron microscopy (SEM). Digital light-processing technology was selected for its printing accuracy and cost-effectiveness. The results encompass comprehensive studies of the mechanical, thermal, and morphological aspects that contribute to the advancement of additive manufacturing technology. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composites)
Show Figures

Figure 1

11 pages, 6302 KiB  
Article
Full-Color Imaging System Based on the Joint Integration of a Metalens and Neural Network
by Shuling Hu, Ruixue Shi, Bin Wang, Yuan Wei, Binzhi Qi and Peng Zhou
Nanomaterials 2024, 14(8), 715; https://doi.org/10.3390/nano14080715 (registering DOI) - 19 Apr 2024
Abstract
Lenses have been a cornerstone of optical systems for centuries; however, they are inherently limited by the laws of physics, particularly in terms of size and weight. Because of their characteristic light weight, small size, and subwavelength modulation, metalenses have the potential to [...] Read more.
Lenses have been a cornerstone of optical systems for centuries; however, they are inherently limited by the laws of physics, particularly in terms of size and weight. Because of their characteristic light weight, small size, and subwavelength modulation, metalenses have the potential to miniaturize and integrate imaging systems. However, metalenses still face the problem that chromatic aberration affects the clarity and accuracy of images. A high-quality image system based on the end-to-end joint optimization of a neural network and an achromatic metalens is demonstrated in this paper. In the multi-scale encoder–decoder network, both the phase characteristics of the metalens and the hyperparameters of the neural network are optimized to obtain high-resolution images. The average peak-signal-to-noise ratio (PSNR) and average structure similarity (SSIM) of the recovered images reach 28.53 and 0.83. This method enables full-color and high-performance imaging in the visible band. Our approach holds promise for a wide range of applications, including medical imaging, remote sensing, and consumer electronics. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Figure 1

16 pages, 2215 KiB  
Article
Evaluation of Maize Hybrids for Resistance to Ear Rot Caused by Dominant Fusarium Species in Northeast China
by Zhoujie Ma, Jianjun Wang, Shenghui Wen, Jiankai Ren, Hongyan Hui, Yufei Huang, Junwei Yang, Bianping Zhao, Bo Liu and Zenggui Gao
Agronomy 2024, 14(4), 855; https://doi.org/10.3390/agronomy14040855 (registering DOI) - 19 Apr 2024
Abstract
Ear rot caused by the Fusarium species has led to a decline in maize yield and kernel quality worldwide. The changes in the population structure of pathogens and the widespread planting of susceptible maize varieties have exacerbated the occurrence and harm of ear [...] Read more.
Ear rot caused by the Fusarium species has led to a decline in maize yield and kernel quality worldwide. The changes in the population structure of pathogens and the widespread planting of susceptible maize varieties have exacerbated the occurrence and harm of ear rot in China. Therefore, it is very important to establish the species composition of Fusarium and evaluate the resistance of the main cultivated hybrids. In this study, 366 single conidial isolates of Fusarium spp. were obtained from three provinces of Northeast China. F. verticillioides, F. subglutinans, F. proliferatum, F. oxysporum, and F. graminearum species complex (FGSC) were identified, with F. verticillioides being the most prevalent with a frequency of 44.0%. Based on the TEF-1α gene sequences analysis, the FGSC populations consisted of two independent species: F. boothii and F. graminearum, which account for 23.8% and 5.7% of the total isolates, respectively. Additionally, the resistance to ear rot by 97 maize hybrids commonly planted in Northeast China was evaluated by inoculation with F. verticillioides during 2021 and 2022. The results showed that the disease parameters of different hybrids varied significantly (p < 0.05). Approximately half of the hybrids had damage rates ranging from 0 to 15%, and 79.4% of the hybrids had a severity rating of less than 5.5. In total, 49 (50.5%) hybrids were rated as moderately resistant, which was the dominant resistance category, and 71 hybrids (73.2%) were identified as moderately to highly resistant to ear rot. Current research confirms that Fusarium ear rot in maize is mainly caused by F. verticillioides in Northeast China, and many hybrids are resistant to the disease. This study will guide growers to scientifically deploy resistant commercial hybrids to control ear rot. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

11 pages, 2184 KiB  
Article
Safety and Outcomes of Inferior Vena Cava Filter Placement in Oncology Patients: A Single-Centre Experience
by Paweł Kurzyna, Marta Banaszkiewicz, Michał Florczyk, Jarosław Kępski, Michał Piłka, Piotr Kędzierski, Rafał Mańczak, Piotr Szwed, Krzysztof Kasperowicz, Katarzyna Wrona, Grzegorz Doroszewski, Adam Torbicki, Marcin Kurzyna, Sebastian Szmit and Szymon Darocha
Cancers 2024, 16(8), 1562; https://doi.org/10.3390/cancers16081562 (registering DOI) - 19 Apr 2024
Abstract
The risk of venous thromboembolism (VTE) in the oncology population is significantly higher than in non-cancer patients. Inferior vena cava (IVC) filters may, therefore, be an important part of VTE treatment. In this study, we address the outcomes of placing IVC filters in [...] Read more.
The risk of venous thromboembolism (VTE) in the oncology population is significantly higher than in non-cancer patients. Inferior vena cava (IVC) filters may, therefore, be an important part of VTE treatment. In this study, we address the outcomes of placing IVC filters in the oncology population. This single-centre, observational, retrospective study included 62 patients with active malignancy and acute VTE who underwent an IVC filter implantation due to contraindications to anticoagulation during the period 2012–2023. The control group consisted of 117 trauma patients. In both groups, an urgent surgical procedure requiring temporary cessation of anticoagulation was the most noted reason for IVC filter placement—76% in the oncology group vs. 100% in the non-oncology group (p < 0.001). No complications were reported during the IVC filter implantation procedures. There was no recurrence of pulmonary embolism or deep venous thrombosis in the oncology group after filter implantation. The rate of successful filter explantation, median time to retrieval, and abnormal findings during retrieval were not significantly different between both subgroups (64.3% vs. 76.5%, p = 0.334; 77 days vs. 84 days, p = 0.764; 61.5% vs. 54.2%, p = 0.672; respectively). The study showed that IVC filter placement is a safe and effective method of preventing PE in cancer patients with contraindications to anticoagulation. The complication rate following IVC filter implantation in cancer patients is low and similar to that in non-oncology patients. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

18 pages, 5671 KiB  
Article
Fault-Coping Algorithm for Improving Leader–Follower Swarm-Control Algorithm of Unmanned Surface Vehicles
by Jihyeong Lee, Daehyeong Ji, Hyunjoon Cho, Saehun Baeg and Sangki Jeong
Appl. Sci. 2024, 14(8), 3444; https://doi.org/10.3390/app14083444 (registering DOI) - 19 Apr 2024
Abstract
This study presents a swarm-control algorithm to overcome the limitations inherent to single-object systems. The leader–follower swarm-control method was selected for its ease of mathematical interpretation and theoretical potential for the unlimited expansion of followers. However, a known drawback of this method is [...] Read more.
This study presents a swarm-control algorithm to overcome the limitations inherent to single-object systems. The leader–follower swarm-control method was selected for its ease of mathematical interpretation and theoretical potential for the unlimited expansion of followers. However, a known drawback of this method is the risk of swarm collapse when the leader breaks down. To address this, a fault-coping algorithm was developed and supplemented to the leader–follower swarm-control method, which enabled the detection and responsive handling of failures, thereby ensuring mission continuity. Comprehensive data, including voltage, current, thruster speed, position, and heading angle were acquired and analyzed using sensors on unmanned surface vehicles (USVs) to monitor potential failures. In the case of a failure, such as thruster malfunction, the nearest USV seamlessly takes charge of the mission under the guidance of the fault-coping algorithm. The leader–follower swarm-control and fault-coping algorithms were successfully validated through actual sea area tests, which confirmed their operational efficacy. This study affirms the well-formed nature of the USV swarm formation and demonstrates the effectiveness of the fault-coping algorithm in ensuring normal mission performance under the virtual failure scenarios applied to the leader USV. Full article
Show Figures

Figure 1

12 pages, 4258 KiB  
Article
Improving the Electroluminescence Properties of New Chrysene Derivatives with High Color Purity for Deep-Blue OLEDs
by Sunwoo Park, Changyu Lee, Hayoon Lee, Kiho Lee, Hyukmin Kwon, Sangwook Park and Jongwook Park
Materials 2024, 17(8), 1887; https://doi.org/10.3390/ma17081887 (registering DOI) - 19 Apr 2024
Abstract
Two blue-emitting materials, 4-(12-([1,1′:3′,1″-terphenyl]-5′-yl)chrysen-6-yl)-N,N-diphenylaniline (TPA-C-TP) and 6-([1,1′:3′,1″-terphenyl]-5′-yl)-12-(4-(1,2,2-triphenylvinyl)phenyl)chrysene (TPE-C-TP), were prepared with the composition of a chrysene core moiety and terphenyl (TP), triphenyl amine (TPA), and tetraphenylethylene (TPE) moieties as side groups. The maximum photoluminescence (PL) emission wavelengths of TPA-C-TP and TPE-C-TP were 435 [...] Read more.
Two blue-emitting materials, 4-(12-([1,1′:3′,1″-terphenyl]-5′-yl)chrysen-6-yl)-N,N-diphenylaniline (TPA-C-TP) and 6-([1,1′:3′,1″-terphenyl]-5′-yl)-12-(4-(1,2,2-triphenylvinyl)phenyl)chrysene (TPE-C-TP), were prepared with the composition of a chrysene core moiety and terphenyl (TP), triphenyl amine (TPA), and tetraphenylethylene (TPE) moieties as side groups. The maximum photoluminescence (PL) emission wavelengths of TPA-C-TP and TPE-C-TP were 435 and 369 nm in the solution state and 444 and 471 nm in the film state. TPA-C-TP effectively prevented intermolecular packing through the introduction of TPA, a bulky aromatic amine group, and it showed an excellent photoluminescence quantum yield (PLQY) of 86% in the film state. TPE-C-TP exhibited aggregation-induced emission; the PLQY increased dramatically from 0.1% to 78% from the solution state to the film state. The two synthesized materials had excellent thermal stability, with a high decomposition temperature exceeding 460 °C. The two compounds were used as emitting layers in a non-doped device. The TPA-C-TP device achieved excellent electroluminescence (EL) performance, with Commission Internationale de L′Eclairage co-ordinates of (0.15, 0.07) and an external quantum efficiency of 4.13%, corresponding to an EL peak wavelength of 439 nm. Full article
Show Figures

Figure 1

21 pages, 1772 KiB  
Review
Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming
by Taichi Umeyama, Taito Matsuda and Kinichi Nakashima
Cells 2024, 13(8), 707; https://doi.org/10.3390/cells13080707 (registering DOI) - 19 Apr 2024
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, [...] Read more.
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions. Full article
(This article belongs to the Collection Signaling Pathways in Cell Generation and Reprogramming)
Show Figures

Graphical abstract

17 pages, 1790 KiB  
Article
The Expression of Key Ethylene and Anthocyanin Biosynthetic Genes of ‘Honeycrisp’ Apples Subjected to the Combined Use of Reflective Groundcovers and Aminoethoxyvinylglycine in the Mid-Atlantic US
by Md Shipon Miah and Macarena Farcuh
Plants 2024, 13(8), 1141; https://doi.org/10.3390/plants13081141 (registering DOI) - 19 Apr 2024
Abstract
The decreased profitability of important apple cultivars, such as ‘Honeycrisp’, results from the poor red skin coloration and high fruit drop in the mid-Atlantic US. Apple red skin coloration is determined by the anthocyanin concentration. Reflective groundcovers promote red skin coloration, whereas aminoethoxyvinylglycine [...] Read more.
The decreased profitability of important apple cultivars, such as ‘Honeycrisp’, results from the poor red skin coloration and high fruit drop in the mid-Atlantic US. Apple red skin coloration is determined by the anthocyanin concentration. Reflective groundcovers promote red skin coloration, whereas aminoethoxyvinylglycine (AVG) decreases the ethylene production and fruit drop, thus reducing the coloration. Although our previous study showed that combinations of these practices impact the fruit quality and color, research is lacking regarding their effects at the gene and metabolite levels. In this work, for two years, we compared the differences in the internal ethylene concentration (IEC), red skin coloration, fruit drop, transcript accumulation of key ethylene and anthocyanin biosynthetic pathway-related genes, and total anthocyanin concentration of ‘Honeycrisp’ apples. The fruit was treated with combinations of reflective groundcover (Extenday) and AVG (130 mg L−1) and was assessed throughout ripening. Extenday-only-treated fruit displayed the highest upregulation of ethylene and anthocyanin biosynthetic-related genes and of total anthocyanins, exceeding 50% blush, while boosting the IEC. In contrast, AVG significantly decreased the expression of key ethylene and anthocyanin biosynthetic-related genes and total anthocyanins, thus preventing apples from reaching 50% blush, while also decreasing the IEC and fruit drop. The combination of Extenday x AVG fine-tuned the transcript accumulation of ethylene and anthocyanin biosynthetic-related genes as well as the total anthocyanins, allowing the ‘Honeycrisp’ fruit to exceed 50% blush, while increasing the IEC moderately and reducing the fruit drop (as compared to Extenday-only and control), thus enhancing the fruit economic value. Full article
(This article belongs to the Special Issue Horticultural Plant Cultivation and Fruit Quality Enhancement)
Show Figures

Figure 1

17 pages, 4725 KiB  
Article
ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles
by Xiaofeng Zhao, Wenwen Zhang, Hui Zhang, Chao Zheng, Junyi Ma and Zhili Zhang
Drones 2024, 8(4), 161; https://doi.org/10.3390/drones8040161 (registering DOI) - 19 Apr 2024
Abstract
A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational [...] Read more.
A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model’s applicability for infrared target detection on unmanned aerial vehicles (UAVs). Full article
Show Figures

Figure 1

12 pages, 3870 KiB  
Article
Rapid and Sensitive Detection of Influenza B Virus Employing Nanocomposite Spheres Based on Ag-Doped ZnIn2S4 Quantum Dots
by Jia-Xuan Hu, Li-Bang Zhu, Sheng-Tong Wu and Shou-Nian Ding
Chemosensors 2024, 12(4), 68; https://doi.org/10.3390/chemosensors12040068 (registering DOI) - 19 Apr 2024
Abstract
Lateral flow immunoassay (LFIA) technology serves a significant role as a simple and rapid biosensor in the detection of influenza viruses. The focus of this study is the development of a rapid and convenient screening method for influenza B virus (IBV) proteins using [...] Read more.
Lateral flow immunoassay (LFIA) technology serves a significant role as a simple and rapid biosensor in the detection of influenza viruses. The focus of this study is the development of a rapid and convenient screening method for influenza B virus (IBV) proteins using a fluorescence lateral flow biosensor based on Ag-doped ZnIn2S4 quantum dots (Ag: ZIS QDs) as signal reporters. These Ag: ZIS QDs-emitting orange fluorescence are loaded onto dendritic mesoporous silica nanoparticles (DMSNs) and are further coated with a layer of silica shell to form a core–shell structured composite nanomaterial (SiO2 @ Ag: ZIS QDs @ DMSNs). The orange fluorescence effectively eliminates the interference of blue background fluorescence, significantly enhancing the detection sensitivity. This technology demonstrates outstanding performance in the immediate detection of IBV, with a minimum detection limit of 1 ng/mL, compared to the traditional colloidal gold strip with a detection limit of 6 ng/mL. Furthermore, both intra-assay and inter-assay coefficients of variation (CV) are less than 9%. This method holds promise for wide application in early diagnosis, epidemiological investigation, and epidemic surveillance of IBV. Full article
(This article belongs to the Special Issue Rapid Point-of-Care Testing Technology and Application)
Show Figures

Figure 1

13 pages, 466 KiB  
Article
Phenotypic Characterization of Patients with Polycystic Ovary Syndrome in a Population from the Ecuadorian Andes: A Cross-Sectional Study
by María Elena Espinosa, Raúl Sánchez, Tamara Otzen, Estefanía Bautista-Valarezo, Stephanie Aguiar, Isabel Corrales-Gutierrez, Fatima Leon-Larios and Carlos Manterola
J. Clin. Med. 2024, 13(8), 2376; https://doi.org/10.3390/jcm13082376 (registering DOI) - 19 Apr 2024
Abstract
Background: Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine–metabolic disorder in women of reproductive age. Diagnosis is based on the evidence-based international guideline 2018 and the Rotterdam Consensus to classify PCOS phenotypes. This study aims to characterize the biodemographic, clinical, metabolic, and [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine–metabolic disorder in women of reproductive age. Diagnosis is based on the evidence-based international guideline 2018 and the Rotterdam Consensus to classify PCOS phenotypes. This study aims to characterize the biodemographic, clinical, metabolic, and reproductive variables and their relationship with PCOS phenotypes in a population from the Ecuadorian Andes. Methodology: A cross-sectional study was conducted with a non-random consecutive sample of 92 women who attended the outpatient gynecology and endocrinology clinic at the Hospital of the Technical University of Loja (UTPL)—Santa Inés, Loja, Ecuador, between January 2022 and July 2023. Descriptive statistics, mean calculations, standard deviation, parametric and nonparametric tests, odds ratios (OR), confidence intervals (CI), and p-values were employed. Results: The average age was 22 ± 3.4 years, with a predominantly mestizo, urban, single, highly educated, and medium–high socioeconomic level population. It was identified that phenotypes A + B are at a higher risk of developing oligomenorrhea and hypertriglyceridemia compared to phenotypes C + D, with statistically significant differences (p < 0.05). Furthermore, in terms of reproductive variables, phenotypes A + B exhibit a significantly higher frequency of elevated anti-Müllerian hormone (AMH) compared to phenotypes C + D, also with statistical significance (p < 0.05). Conclusions: The classical phenotypes A and B of PCOS are the most common in Ecuadorian Andean women and carry a higher risk of insulin resistance, anovulation, metabolic disorders, and elevated triglyceride levels compared to phenotypes C and D. Ethnic diversity and sociocultural habits influence the prevalence and clinical manifestations of these phenotypes. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Graphical abstract

12 pages, 1725 KiB  
Article
Dissipation and Safety Analysis of Dimethomorph Application in Lychee by High-Performance Liquid Chromatography–Tandem Mass Spectrometry with QuEChERS
by Siwei Wang, Xiaonan Wang, Yanping Liu, Qiang He and Hai Tian
Molecules 2024, 29(8), 1860; https://doi.org/10.3390/molecules29081860 (registering DOI) - 19 Apr 2024
Abstract
This study presents a method for analyzing dimethomorph residues in lychee using QuEChERS extraction and HPLC-MS/MS. The validation parameters for this method, which include accuracy, precision, linearity, and recovery, indicate that it meets standard validation requirements. Following first-order kinetics, the dissipation dynamic of [...] Read more.
This study presents a method for analyzing dimethomorph residues in lychee using QuEChERS extraction and HPLC-MS/MS. The validation parameters for this method, which include accuracy, precision, linearity, and recovery, indicate that it meets standard validation requirements. Following first-order kinetics, the dissipation dynamic of dimethomorph in lychee was determined to range from 6.4 to 9.2 days. Analysis of terminal residues revealed that residues in whole lychee were substantially greater than those in the pulp, indicating that dimethomorph residues are predominantly concentrated in the peel. When applied twice and thrice at two dosage levels with pre-harvest intervals (PHIs) of 5, 7, and 10 days, the terminal residues in whole lychee ranged from 0.092 to 1.99 mg/kg. The terminal residues of the pulp ranged from 0.01 to 0.18 mg/kg, with the residue ratio of whole lychee to pulp consistently exceeding one. The risk quotient (RQ) for dimethomorph, even at the recommended dosage, was less than one, indicating that the potential for damage was negligible. This study contributes to the establishment of maximum residue limits (MRLs) in China by providing essential information on the safe application of dimethomorph in lychee orchards. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

14 pages, 8521 KiB  
Article
Non-Thermal Plasma (NTP) Treatment of Alfalfa Seeds in Different Voltage Conditions Leads to Both Positive and Inhibitory Outcomes Related to Sprout Growth and Nutraceutical Properties
by Iuliana Motrescu, Constantin Lungoci, Anca Elena Calistru, Camelia Elena Luchian, Tincuta Marta Gocan, Cristina Mihaela Rimbu, Emilian Bulgariu, Mihai Alexandru Ciolan and Gerard Jitareanu
Plants 2024, 13(8), 1140; https://doi.org/10.3390/plants13081140 (registering DOI) - 19 Apr 2024
Abstract
Non-thermal plasma (NTP) has proven to be a green method in the agricultural field for the stimulation of germination, growth, and production of nutraceutical compounds in some cases. However, the process is far from being fully understood and depends on the targeted plant [...] Read more.
Non-thermal plasma (NTP) has proven to be a green method in the agricultural field for the stimulation of germination, growth, and production of nutraceutical compounds in some cases. However, the process is far from being fully understood and depends on the targeted plant species and the NTP used. In this work, we focus on the production of alfalfa sprouts from NTP-treated seeds under different voltage conditions. A flexible electrode configuration was used to produce the NTP, which can also be placed on packages for in-package treatments. The surface of the seeds was analyzed, indicating that the microstructure was strongly affected by NTP treatment. Biometric measurements evidenced the possibility of stimulating the sprout growth in some conditions by up to 50% compared to the sprouts obtained from untreated seeds. Biochemical traits for the sprouts obtained in different processing conditions were also studied, such as the concentrations of chlorophyll pigments, flavonoids and polyphenols, and antioxidant activity. Most NTP treatments led to inhibitory effects, proving the strong dependence between NTP treatment and targeted plant species. Full article
Show Figures

Figure 1

10 pages, 3102 KiB  
Article
No Sequestration of Commonly Used Anti-Infectives in the Extracorporeal Membrane Oxygenation (ECMO) Circuit—An Ex Vivo Study
by Hendrik Booke, Benjamin Friedrichson, Lena Draheim, Thilo Caspar von Groote, Otto Frey, Anka Röhr, Kai Zacharowski and Elisabeth Hannah Adam
Antibiotics 2024, 13(4), 373; https://doi.org/10.3390/antibiotics13040373 (registering DOI) - 19 Apr 2024
Abstract
Patients undergoing extracorporeal membrane oxygenation (ECMO) often require therapy with anti-infective drugs. The pharmacokinetics of these drugs may be altered during ECMO treatment due to pathophysiological changes in the drug metabolism of the critically ill and/or the ECMO therapy itself. This study investigates [...] Read more.
Patients undergoing extracorporeal membrane oxygenation (ECMO) often require therapy with anti-infective drugs. The pharmacokinetics of these drugs may be altered during ECMO treatment due to pathophysiological changes in the drug metabolism of the critically ill and/or the ECMO therapy itself. This study investigates the latter aspect for commonly used anti-infective drugs in an ex vivo setting. A fully functional ECMO device circulated an albumin–electrolyte solution through the ECMO tubes and oxygenator. The antibiotic agents cefazolin, cefuroxim, cefepime, cefiderocol, linezolid and daptomycin and the antifungal agent anidulafungin were added. Blood samples were taken over a period of four hours and drug concentrations were measured via high-pressure liquid chromatography (HPLC) with UV detection. Subsequently, the study analyzed the time course of anti-infective concentrations. The results showed no significant changes in the concentration of any tested anti-infectives throughout the study period. This ex vivo study demonstrates that the ECMO device itself has no impact on the concentration of commonly used anti-infectives. These findings suggest that ECMO therapy does not contribute to alterations in the concentrations of anti-infective medications in severely ill patients. Full article
Show Figures

Figure 1

25 pages, 38527 KiB  
Article
Molecular Phylogenetic and Comparative Genomic Analysis of Pleurocordyceps fusiformispora sp. nov. and Perennicordyceps elaphomyceticola in the Family Polycephalomycetaceae
by Zuoheng Liu, Yingling Lu, Dexiang Tang, Juye Zhu, Lijun Luo, Yue Chen and Hong Yu
J. Fungi 2024, 10(4), 297; https://doi.org/10.3390/jof10040297 (registering DOI) - 19 Apr 2024
Abstract
Several Pleurocordyceps species have been reported as hyperparasitic fungi. A new species, Pleurocordyceps fusiformispora, and a known species, Perennicordyceps elaphomyceticola, are described here based on morphology and phylogenetic evidence from six genes (ITS, SSU, LSU, TET1-α, RPB1, and RPB2 [...] Read more.
Several Pleurocordyceps species have been reported as hyperparasitic fungi. A new species, Pleurocordyceps fusiformispora, and a known species, Perennicordyceps elaphomyceticola, are described here based on morphology and phylogenetic evidence from six genes (ITS, SSU, LSU, TET1-α, RPB1, and RPB2). Pl. fusiformispora differed from the other Pleurocordyceps species by producing flaky colonies, ovoid or elliptic α-conidia, and fusiform or long fusiform β-conidia. Both full genomes of Pe. elaphomyceticola and Pl. fusiformispora were sequenced, annotated, and compared. The antiSMASH and local BLAST analyses revealed significant differences in the number and types of putative secondary metabolite biosynthetic gene clusters, i.e., NPPS, PKS, and hybrid PKS–NRPS domains, between the two species. In addition, the putative BGCs of six compounds, namely ε-poly lysine, 4-epi-15-epi-brefeldin A, Monorden D/monocillin IV/monocillin VII/pochonin M/monocillin V/monocillin II, Tolypyridone, Piperazine, and Triticone DABFC, were excavated in the present study. This study motivates the use of heterologous expression and gene knockout methods to discover novel biologically active SMs from Polycephalomycetaceae. Full article
Show Figures

Figure 1

21 pages, 7404 KiB  
Article
GW501516-Mediated Targeting of Tetraspanin 15 Regulates ADAM10-Dependent N-Cadherin Cleavage in Invasive Bladder Cancer Cells
by Alexandre Barbaud, Isabelle Lascombe, Adeline Péchery, Sergen Arslan, François Kleinclauss and Sylvie Fauconnet
Cells 2024, 13(8), 708; https://doi.org/10.3390/cells13080708 (registering DOI) - 19 Apr 2024
Abstract
Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an [...] Read more.
Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an ADAM10-interacting protein to induce selective N-cadherin cleavage. We first demonstrated, in invasive T24 bladder cancer cells, that N-cadherin was cleaved by ADAM10 generating NTF in the extracellular environment and leaving a membrane-anchored CTF1 fragment and that Tspan15 is required for ADAM10 to induce the selective N-cadherin cleavage. Targeting N-cadherin function in cancer is relevant to preventing tumor progression and metastases. For antitumor molecules to inhibit N-cadherin function, they should be complete and not cleaved. We first showed that the GW501516, an agonist of the nuclear receptor PPARβ/δ, decreased Tspan15 and prevented N-cadherin cleavage thus decreasing NTF. Interestingly, the drug did not modify ADAM10 expression, which was important because it could limit side effects since ADAM10 cleaves numerous substrates. By targeting Tspan15 to block ADAM10 activity on N-cadherin, GW501516 could prevent NTF pro-tumoral effects and be a promising molecule to treat bladder cancer. More interestingly, it could optimize the effects of the N-cadherin antagonists those such as ADH-1 that target the N-cadherin ectodomain. Full article
Show Figures

Figure 1

12 pages, 770 KiB  
Article
The Flexion Relaxation Phenomenon in Patients with Radiculopathy and Low Back Pain: A Cross-Sectional Study
by Marijan Peharec, Stanislav Peharec, Vedran Srhoj-Egekher, Romana Jerković, Dean Girotto and Gordana Starčević-Klasan
J. Funct. Morphol. Kinesiol. 2024, 9(2), 77; https://doi.org/10.3390/jfmk9020077 (registering DOI) - 19 Apr 2024
Abstract
Although the measurements of the lumbar spine and pelvic flexion have shown that subjects with radiculopathy exhibited greater decreases of motion when compared with subjects with low back pain, there is still a lack of evidence regarding the changes in flexion relaxation ratio [...] Read more.
Although the measurements of the lumbar spine and pelvic flexion have shown that subjects with radiculopathy exhibited greater decreases of motion when compared with subjects with low back pain, there is still a lack of evidence regarding the changes in flexion relaxation ratio in patients with radiculopathy. The aims of this study were to investigate the flexion relaxation ratio and flexion of the lumbar spine and pelvis in subjects with low back pain (LBP) and LBP with radiculopathy (LBPR) in comparison with healthy subjects (CG—control group). A total of 146 participants were divided in three groups: LBP patients (54 males; 21 females); LBPR patients (26 males; 11 females); and CG subjects (16 males; 18 females). The lumbar spine and pelvis flexion was recorded using optoelectronic motion capture system. The electrical activity of the erector spinae muscles was assessed by surface electromyography during flexion-extension movements. Comparisons between groups were made using one-way ANOVA tests and Mann–Whithney U test with the level of statistical significance at 0.05. The lumbar and pelvic flexion and electromyography of the erector spinae muscle showed significant differences between LBP and LBPR patients compared to CG. Patients LBPR showed significantly smaller angles of lumbar and pelvic flexion compared to LBP patients and CG. An increase in the erector spinae muscle activity during flexion was also observed in patients with radiculopathy. The increased muscular activity of the erector spinae is related to the reduced flexion of the lumbar spine in order to protect the lumbar spine structure. Measurements of trunk, lumbar spine and pelvic flexion, and the flexion relaxation ratio may allow us to predict better outcomes or responsiveness to treatment of LBPR patients in the future. Full article
(This article belongs to the Topic New Advances in Musculoskeletal Disorders)
Show Figures

Figure 1

11 pages, 3653 KiB  
Article
Fabrication of Cu2Sn1-xGexS3 Thin-Film Solar Cells via Sulfurization of Cu2GeS3/Cu2SnS3 Stacked Precursors
by Takeshi Tasaki, Kazuo Jimbo, Daiki Motai, Masaya Takahashi and Hideaki Araki
Materials 2024, 17(8), 1886; https://doi.org/10.3390/ma17081886 (registering DOI) - 19 Apr 2024
Abstract
Cu2Sn1-xGexS3 (CTGS) is a compound composed of relatively abundant elements in the crust of the earth. The band gap of CTGS can be tuned by substituting elements at the Sn and Ge sites, making it an [...] Read more.
Cu2Sn1-xGexS3 (CTGS) is a compound composed of relatively abundant elements in the crust of the earth. The band gap of CTGS can be tuned by substituting elements at the Sn and Ge sites, making it an attractive material for low-environmental-impact solar cells. In this study, CTGS thin films were fabricated with a controlled [Ge]/([Ge] + [Sn]) composition ratio (x) by combining the co-evaporation method and sulfurization in an infrared furnace. Furthermore, the effect of Na on the CTGS and changes in the solar cell properties were investigated by stacking and sulfurizing NaF on the precursor fabricated using the co-evaporation method. As a result, CTGS with varying x was successfully fabricated by varying the deposition time of the Cu2GeS3 layer using co-evaporation. Additionally, CTGS prepared by doping with Na showed enlarged CTGS crystals compared to Na-free CTGS. The fabricated CTGS solar cells achieved a power conversion efficiency of more than 4.5% after doping with Na. Full article
Show Figures

Figure 1

13 pages, 10209 KiB  
Article
Plasma Bombardment-Induced Amorphization of (TiNbZrCr)Nx High-Entropy Alloy Nitride Films
by Yantao Li, Donglin Ma, Jun Liang, Deming Huang, Libo Wang, Diqi Ren, Xin Jiang and Yongxiang Leng
Coatings 2024, 14(4), 505; https://doi.org/10.3390/coatings14040505 (registering DOI) - 19 Apr 2024
Abstract
The (TiNbZrCr)Nx high-entropy nitride films (HENFs) were prepared by high-power pulsed magnetron sputtering (HPPMS). The effect of the N2 flow rate (FN) on the HPPMS plasma discharge, film composition, microstructure, residual stress, tribological properties, and corrosion resistance was investigated. [...] Read more.
The (TiNbZrCr)Nx high-entropy nitride films (HENFs) were prepared by high-power pulsed magnetron sputtering (HPPMS). The effect of the N2 flow rate (FN) on the HPPMS plasma discharge, film composition, microstructure, residual stress, tribological properties, and corrosion resistance was investigated. Results show that, with the increase in FN, plasma discharge is enhanced. Firstly, the introduced N atoms react with Ti, Nb, Cr, and Zr to form an FCC nitride phase structure. Then, with the increase in plasma bombardment on the deposited film, the HENFs undergo amorphization to form an FCC+ amorphous structure, accompanied by a decrease in grain size and a change in the preferred orientation from (1 1 1) to (2 0 0). The HENFs deposited at FN = 8 sccm show the highest hardness of 27.8 GPa. The HENFs deposited at FN = 12 sccm present the best tribological properties, with a low wear rate of 4.0 × 10−6 mm3N−1m−1. The corrosion resistance of the (TiNbZrCr)Nx HENFs shows a strong correlation with the amorphous phase. The corrosion resistance of the FCC nitride film is the worst, and the corrosion resistance gradually increases with the amorphous transformation of the film. Based on the above results, nanocomposite high-entropy films can be prepared using HPPMS technology and exhibit excellent, comprehensive performance. Full article
(This article belongs to the Collection Strong, Ductile and Corrosion-Resistant High-Entropy Alloys)
Show Figures

Figure 1

15 pages, 1810 KiB  
Article
Retrospective Evaluation of the Efficacy of Total Neoadjuvant Therapy and Chemoradiotherapy Neoadjuvant Treatment in Relation to Surgery in Patients with Rectal Cancer
by Lucian Dragoș Bratu, Michael Schenker, Puiu Olivian Stovicek, Ramona Adriana Schenker, Alina Maria Mehedințeanu, Tradian Ciprian Berisha, Andreas Donoiu and Stelian Ștefăniță Mogoantă
Medicina 2024, 60(4), 656; https://doi.org/10.3390/medicina60040656 (registering DOI) - 19 Apr 2024
Abstract
Background and Objective: In the therapeutic strategy of rectal cancer, radiotherapy has consolidated its important position and frequent use in current practice due to its indications as neoadjuvant, adjuvant, definitive, or palliative treatment. In recent years, total neoadjuvant therapy (TNT) has been [...] Read more.
Background and Objective: In the therapeutic strategy of rectal cancer, radiotherapy has consolidated its important position and frequent use in current practice due to its indications as neoadjuvant, adjuvant, definitive, or palliative treatment. In recent years, total neoadjuvant therapy (TNT) has been established as the preferred regimen compared to concurrent neoadjuvant chemoradiotherapy (CRT). In relation to better outcomes, the percentage of patients who achieved pathological complete response (pCR) after neoadjuvant treatment is higher in the case of TNT. This study aimed to analyze the response to TNT compared to neoadjuvant CRT regarding pCR rate and the change in staging after surgical intervention. Materials and Methods: We performed a retrospective study on 323 patients with rectal cancer and finally analyzed the data of 201 patients with neoadjuvant treatment, selected based on the inclusion and exclusion criteria. Patients received CRT neoadjuvant therapy or TNT neoadjuvant therapy with FOLFOX or CAPEOX. Results: Out of 157 patients who underwent TNT treatment, 19.74% had pathological complete response, whereas in the group with CRT (n = 44), those with pCR were 13.64%. After neoadjuvant treatment, the most frequent TNM classifications were ypT2 (40.30%) and ypN0 (79.10%). The statistical analysis of the postoperative disease stage, after neoadjuvant therapy, showed that the most frequent changes were downstaging (71.14%) and complete response (18.41%). Only four patients (1.99%) had an upstaging change. The majority of patients (88.56%) initially presented clinical evidence of nodal involvement whereas only 20.9% of the patients still presented regional disease at the time of surgical intervention. Conclusions: By using TNT, a higher rate of stage reduction is obtained compared to the neoadjuvant CRT treatment. The post-neoadjuvant-treatment imagistic evaluation fails to accurately evaluate the response. A better response to TNT was observed in young patients. Full article
Show Figures

Figure 1

27 pages, 1350 KiB  
Article
EEG, Pupil Dilations, and Other Physiological Measures of Working Memory Load in the Sternberg Task
by Mohammad Ahmadi, Samantha W. Michalka, Marzieh Ahmadi Najafabadi, Burkhard C. Wünsche and Mark Billinghurst
Multimodal Technol. Interact. 2024, 8(4), 34; https://doi.org/10.3390/mti8040034 (registering DOI) - 19 Apr 2024
Abstract
Recent evidence shows that physiological cues, such as pupil dilation (PD), heart rate (HR), skin conductivity (SC), and electroencephalography (EEG), can indicate cognitive load (CL) in users while performing tasks. This paper aims to investigate physiological (multimodal) measurement of CL in a Sternberg [...] Read more.
Recent evidence shows that physiological cues, such as pupil dilation (PD), heart rate (HR), skin conductivity (SC), and electroencephalography (EEG), can indicate cognitive load (CL) in users while performing tasks. This paper aims to investigate physiological (multimodal) measurement of CL in a Sternberg memory task as the difficulty level increases in both maintenance and probe phases. For this purpose, we designed a Sternberg memory test with four levels of difficulty determined by the number of letters in the words that need to be remembered. Our behavioral performance results show that the CL of the task is related to the number of letters in non-semantic words, which confirms that this task serves as an appropriate metric of CL (the task difficulty increases as the number of letters in words increases). We were interested in investigating the suitability of multimodal physiological measures as correlates of four CL levels for both the maintenance and probe phases in the Sternberg memory task. Our motivation was to: (1) design and create four levels of task difficulty with a gradual increase in CL rather than just high and low CL, (2) use the Sternberg test as our test bed, (3) explore both the maintenance and probe phases for measurement of CL, and (4) explore the correlation of physiological cues (PD, HR, SC, EEG) with CL in both phases. Testing with the system, we found that for both the maintenance and probe phases, there was a significant positive linear relationship between average baseline corrected PD and CL. We also observed that the average baseline corrected SC showed significant increases as the number of letters in the words increased for both the maintenance and probe phases. However, the HR analysis did not show any correlation with an increase in CL in either of the maintenance or probe phases. An additional analysis was conducted to investigate the correlation of these physiological signals for high (seven-letter words) versus low (four-letter words) CL loads. Our EEG analysis for the maintenance phase found significant positive linear relationships between the power spectral density (PSD) and CL for the upper alpha bands in the centrotemporal, frontal, and occipitoparietal regions of the brain and significant positive linear relationships between the PSD and CL for the lower alpha band in the frontal and occipitoparietal regions. However, our EEG analysis of the probe phase did not show any linear relationship between the PSD and CL in any region. These results suggest that PD, SC, and EEG could be used as suitable metrics for the measurement of cognitive load in Sternberg memory tasks. We discuss this, limitations of the study, and directions for future work. Full article
Show Figures

Figure 1

11 pages, 5764 KiB  
Article
Simulation of Damage Caused by Oil Fire in Cable Passage to Tunnel Cable
by Feng Liu, Jiaqing Zhang, Mengfei Gu, Yushun Liu, Tao Sun and Liangpeng Ye
Fire 2024, 7(4), 147; https://doi.org/10.3390/fire7040147 (registering DOI) - 19 Apr 2024
Abstract
In order to evaluate the damage to tunnel cables caused by fire caused by leakage of transformer oil into a cable channel, the fire characteristics of different volumes of transformer oil flowing into a cable channel were analyzed by numerical simulation. The results [...] Read more.
In order to evaluate the damage to tunnel cables caused by fire caused by leakage of transformer oil into a cable channel, the fire characteristics of different volumes of transformer oil flowing into a cable channel were analyzed by numerical simulation. The results show that when the total leakage of transformer oil is less than or equal to 3 L, the fire will end within 120 s, and when the total leakage is greater than or equal to 5 L, the fire duration will exceed 900 s. When the leakage amount is 1 L, the cable only burns slightly, and when the leakage amount is 3~12 L, the cable burns obviously. The combustion of the cable is mainly concentrated between 15 s and 75 s, and the overall combustion rate of the cable increases first and then decreases. When the total leakage is greater than or equal to 8 L, the damage distance of the middle and lower layer cable is the smallest. When the total leakage is less than or equal to 5 L, the damage distance of the lower layer cable is the smallest, and the damage distance of the lower layer cable, middle and lower layer cable, and middle and upper layer cable is less than half of the length of the cable channel. Full article
(This article belongs to the Special Issue Cable and Electrical Fires)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop