Skip to main content
Log in

Late Vendian Kotlinian Crisis on the East European Platform: Lithogeochemical Indicators of Depositional Environment

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Sharp changes in the biodiversity of fossil organisms in the Upper Vendian of the East European Platform are considered as the manifestation of global crisis immediately prior to the “Cambrian Explosion.” However, they could be caused by local environmental perturbations. Variations of some lithogeochemical indicators of depositional environment (indicators of paleoclimate, exhalation activity, redox settings, and paleobioproductivity) were analyzed in order to establish the possible influence of sedimentary systems on evolutionary processes in the Late Vendian and at the boundary with the Cambrian. The applied algorithm of lithogeochemical studies revealed no significant perturbations in physical properties of the environment on a scale of sedimentary basins. The obtained data suggest that local factors did not affect the evolution of Ediacaran biota on the East European Platform and confirm the global nature of transitions between the Redkinian, Belomorian, and Kotlinian biotas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. In the Russian geological literature, this is NKM–FM diagram (Yudovich and Ketris, 2000). Hereinafter, \({\text{F}}{{{\text{e}}}_{2}}{\text{O}}_{3}^{*}\) is the total iron.

  2. CaO* is the content of CaO in the siliciclastic matrix of rock.

  3. Titanium module is calculated from formula (Fe + Mn)/Ti, aluminum module is calculated as Al/(Al + Fe + Mn).

  4. The emergence of disoxic settings in bottom waters can be inferred here at stage III, but relatively low Mo/Mn ratio in some mudstone samples from the lower part of the Chernyi Kamen Formation indicates that they were not steady.

  5. In our opinion, the Upper Vendian Redkinian Regional Stage of Borehole Keltmenskaya-1(Maslov and Podkovyrov, 2015) includes rocks within the interval of 2790 (80)–2309 m. The interval of 2309–1725 m belongs to the Belomorian Regional Stage; interval of 1725–1330, to the Kotlinian.

REFERENCES

  1. Algeo, T.J. and Ingall, E., Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 256, pp. 130–155.

    Article  Google Scholar 

  2. Algeo, T.J. and Maynard, J.B., Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems, Chem. Geol., 2004, vol. 206, pp. 289–318.

    Article  Google Scholar 

  3. Anderson, R.F. and Winckler, G., Problems with paleoproductivity proxies, Paleoceanography, 2005, vol. 20, PA3012. https://doi.org/10.1029/2004PA001107

    Google Scholar 

  4. Averyt, K.B. and Paytan, A., A comparison of multiple proxies for export production in the equatorial Pacific, Paleoceanography, 2004, vol. 19. PA4003. https://doi.org/10.1029/2004PA001005

    Article  Google Scholar 

  5. Bostrom, K., The origin and fate of ferromanganoan active ridge sediments, Stockholm Contrib. Geol., 1973, vol. 27, pp. 148–243.

    Google Scholar 

  6. Boyd, P. and Newton, P., Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux, Deep-Sea Res Part I, 1995, part 1, vol. 42, pp. 619–639.

    Article  Google Scholar 

  7. Boyd, P.W. and Newton, P.P., Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?, Deep-Sea Res. Part I, 1999, part 1, vol. 46, pp. 63–91.

    Article  Google Scholar 

  8. Brasier, M.D., On mass extinction and faunal turnover near the end of the Precambrian, in Mass extinction processes and evidence, Donovan, S.K., Ed., London: Belhaven Press, 1989, pp. 73–88.

    Google Scholar 

  9. Brasier, M.D., Background to the Cambrian explosion, J. Geol. Soc., 1992a, vol. 149, pp. 585–587.

    Article  Google Scholar 

  10. Brasier, M.D., Paleoceanography and changes in the biological cycling of phosphorus across the Precambrian–Cambrian boundary, in Origin and early evolution of the Metazoa, Lipps, J.H. and Signor, P.W., Eds., N. Y.: Plenum Press, 1992b, pp. 483–523.

    Google Scholar 

  11. Brasier, M.D., The basal Cambrian transition and Cambrian bio-events (from Terminal Proterozoic extinctions to Cambrian biomeres), in Global events and event stratigraphy in Phanerozoic, Walliser, O.H., Ed., Berlin: Springer, 1995, pp. 113–138.

    Google Scholar 

  12. Brasier, M.D. and Lindsay, J.F., Did supercontinental amalgamation trigger the “Cambrian Explosion”?, in The Ecology of the Cambrian Radiation, Zhuravlev, A. and Riding, R., Eds., N. Y.: Columbia Univ. Press, 2001, pp. 69–89.

    Google Scholar 

  13. Brumsack, H.-J., The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2006, vol. 232, pp. 344–361.

    Article  Google Scholar 

  14. Butterfield, N.J., Animals and the invention of the Phanerozoic Earth System, Trends in Ecology Evolution, 2011, vol. 26, pp. 81–87.

    Article  Google Scholar 

  15. Butterfield, N.J., Oxygen, animals and aquatic bioturbation: an updated account, Geobiology, 2018, vol. 16, pp. 3–16.

    Article  Google Scholar 

  16. Bykova, N., Gill, B.C., Grazhdankin, D., et al., A geochemical study of the Ediacaran discoidal fossil Aspidella preserved in limestones: implications for its taphonomy and paleoecology, Geobiology, 2017, vol. 15, pp. 572–587.

    Article  Google Scholar 

  17. Calvert, S.E. and Pedersen, T.F., Geochemistry of recent oxic and anoxic sediments: implications for the geological record, Mar. Geol., 1993, vol. 113, pp. 67–88.

    Article  Google Scholar 

  18. Canfield, D.E., Poulton, S.W., and Narbonne, G.M., Late-Neoproterozoic deep-ocean oxygenation and rise of animal life, Science, 2007, vol. 315, pp. 92–95.

    Article  Google Scholar 

  19. Challands, T.J., Armstrong, H.A., Maloney, D.P., and Davies, J.R., Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian): a case study from the Welsh Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2009, vol. 273, pp. 395–410.

    Article  Google Scholar 

  20. Condon, D., Zhu, M., Bowring, S., et al., U-Pb ages from the Neoproterozoic Doushantuo Formation, China, Science, 2005, vol. 305, pp. 95–98.

    Article  Google Scholar 

  21. Cui, H., Kaufman, A.J., Xiao, S., et al., Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China, Chem. Geol., 2017, vol. 450, pp. 59–80.

    Article  Google Scholar 

  22. Cullers, R.L., Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA, Chem. Geol., 2002, vol. 191, pp. 305–327.

    Article  Google Scholar 

  23. Darroch, S.A.F., Sperling, E.A., Boag, T.H., et al., Biotic replacement and mass extinction of the Ediacara biota, Proc. R. Soc., 2015, B 282. 20151003. http://dx.doi.org/ https://doi.org/10.1098/rspb.2015.1003

  24. Dronov, A., Tolmacheva, T., Raevskaya, E., and Nestell, M., Cambrian and Ordovician of St. Petersburg region, SPb.: St. Petersb. State Univ., 2005.

    Google Scholar 

  25. Dymond, J., Suess E., Lyle M., Barium in deep-sea sediment: A geochemical proxy for paleoproductivity, Paleoceanography, 1992, vol. 7, pp. 163–181.

    Article  Google Scholar 

  26. Einsele, G. Sedimentary Basins: Evolution, Facies, and Sedimentary Budget, Berlin: Springer, 2000.

    Book  Google Scholar 

  27. Fedo, C.M., Nesbitt, H.W., and Young, G.M., Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, Geology, 1995, vol. 23, pp. 921–924.

    Article  Google Scholar 

  28. Fedonkin, M.A., Ivantsov, A.Yu., Leonov, M.V., and Serezhnikova, E.A., Dynamics of evolution and biodiversity in the late Vendian: a view from the White Sea, in The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere, Semikhatov, M.A., Ed., Moscow: GEOS, 2007, pp. 6–9.

    Google Scholar 

  29. Fernex, F., Février, G., Benaïm, J., and Arnoux, A., Copper, lead and zinc trapping in Mediterranean deep-sea sediments: probable coprecipitation with manganese and iron, Chem. Geol., 1992, vol. 98, pp. 293–308.

    Article  Google Scholar 

  30. Fike, D.A., Grotzinger, J.P., Pratt, L.M., et al., Oxidation of the Ediacaran Ocean, Nature, 2006, vol. 444, pp. 744–747.

    Article  Google Scholar 

  31. Gavrilov, Yu.O., Shchepetova, E.V., Baraboshkin, E.Yu., and Shcherbinina, E.A., The Early Cretaceous anoxic basin of the Russian Plate: Sedimentology and geochemistry, Lithol. Miner. Resour., 2002, no. 4, pp. 310–329.

  32. Gavrilov, Yu.O., Shchepetova, E.V., Rogov, M.A., and Shcherbinina, E.A., Sedimentology, geochemistry, and biota of Volgian carbonaceous sequences in the northern part of the Central Russian Sea, Lithol. Miner. Resour., 2008, no. 4, pp. 338–353.

  33. Gong, Z., Kodama, K., and Li, Y.-X., Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion, Precambrian Res., 2017, vol. 289, pp. 62–74.

    Article  Google Scholar 

  34. Gooday A.J., Bett B.J., Escobar E. et al. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones, Mar. Ecol., 2010, vol. 31, pp. 125–147.

    Article  Google Scholar 

  35. Grazhdankin, D.V., Structure and depositional environment of the Vendian Complex in the southeastern White Sea area, Stratigr. Geol. Correlation, 2003, vol. 11, no. 4, pp. 313–331.

    Google Scholar 

  36. Grazhdankin D. The Neoproterozoic sedimentation in the Timan foreland, in The Neoproterozoic Timanide Orogen of Eastern Baltica, Gee, D.G. and Pease, V., Eds., Geol. Soc. Lond. Mem., 2004, vol. 30, pp. 37–46.

    Google Scholar 

  37. Grazhdankin D. Patterns of evolution of the Ediacaran soft-bodied biota, J. Paleontol., 2014, vol. 88, pp. 269–283.

    Article  Google Scholar 

  38. Grazhdankin, D.V. and Krayushkin, A.V., Trace fossils and the Upper Vendian boundary in the southeastern White Sea region, Dokl. Earth Sci., 2007, vol. 416, no. 7, pp. 1027–1031.

    Article  Google Scholar 

  39. Grazhdankin, D.V. and Maslov, A.V., Sequence stratigraphy of the Upper Vendian of the East European Craton, Dokl. Earth Sci., 2009, vol. 426, no. 4, pp. 517–521.

    Article  Google Scholar 

  40. Grazhdankin, D.V. and Maslov, A.V., The room for the Vendian in the International Chronostratigraphic Chart, Russian Geology and Geophysics, 2015, vol. 56, pp. 549–559.

  41. Grazhdankin, D.V., Podkovyrov, V.N., and Maslov, A.V., Paleoclimatic environments of the formation of Upper Vendian rocks on the Belomorian–Kuloi Plateau, southeastern White Sea region, Lithol. Miner. Resour, 2005, no. 3, pp. 232–244.

  42. Grazhdankin, D.V., Maslov, A.V., and Krupenin, M.T., Structure and depositional history of the Vendian Sylvitsa Group in the western flank of the Central Urals, Stratigr. Geol. Correlation, 2009, vol. 17, no. 5, pp. 475–492.

    Article  Google Scholar 

  43. Grazhdankin, D.V., Maslov, A.V., Krupenin, M.T., and Ronkin, Yu.L., Osadochnye sistemy sylvitskoi serii (verkhnii vend Srednego Urala) (Depositional Systems in the Sylvitsa Group: Upper Vendian of the Central Urals), Yekaterinburg: UrO RAN, 2010.

    Google Scholar 

  44. Grosjean, E., Adam, P., Connan, P., and Albrecht, P., Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 789–804.

    Article  Google Scholar 

  45. Grotzinger, J.P., Fike, D.A., and Fischer, W.W., Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history, Nature Geoscience, 2011, vol. 4, pp. 285–292.

    Article  Google Scholar 

  46. Gupta, L.P. and Kawahata, H., Downcore diagenetic changes in organic matter and implications for paleoproductivity estimates, Global Planet. Change, 2006, vol. 53, pp. 122–136.

    Article  Google Scholar 

  47. Hatch, J.R. and Leventhal, J.S., Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excell Shale Member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA, Chem. Geol., 1997, vol. 134, pp. 215–235.

    Article  Google Scholar 

  48. Huerta-Diaz, M.A. and Morse, J.W., A quantitative method for determination of trace metal concentrations in sedimentary pyrite, Mar. Chem., 1990, vol. 29, pp. 119–144.

    Article  Google Scholar 

  49. Huerta-Diaz M.A. and Morse J.W. Pyritisation of trace metals in anoxic marine sediments, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 2681–2702.

    Article  Google Scholar 

  50. Ivleva, A.S., Podkovyrov, V.N., Ershova, V.B., et al., Results of U–Pb LA–ICP–MS dating of detrital zircons from Ediacaran–Early Cambrian deposits of the eastern part of the Baltic Monoclise, Dokl. Earth Sci., 2016, vol. 468, no. 4, pp. 593–597.

    Article  Google Scholar 

  51. Jarvis, I., Burnett, W.C., Nathan, Y., et al. Phosphorite geochemistry: state of the art and environmental concerns, Eclogae Geol. Helv., 1994, vol. 87, pp. 643–700.

    Google Scholar 

  52. Jiang, G., Kaufman, A.J., Christie-Blick, N., et al., Carbon isotope variability across the Ediacaran Yangtze Platform in South China: Implications for a large surface-to-deep ocean δ13C gradient, Earth Planet. Sci. Lett., 2007, vol. 261, pp. 303–320.

    Article  Google Scholar 

  53. Johnston, D.T., Poulton, S.W., Goldberg, T., et al., Late Ediacaran redox stability and metazoan evolution, Earth Planet. Sci. Lett., 2012, vol. 335/336, pp. 25–35.

    Article  Google Scholar 

  54. Jones, B. and Manning, D.A.C., Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., 1994, vol. 111, pp. 111–129.

    Article  Google Scholar 

  55. Kholodov, V.N. and Nedumov, R.I., Geochemical criteria of the appearance of hydrosulfuric pollution in ancient basin waters, Izv. Akad. Nauk SSSR, Ser. Geol., 1991, no. 12, pp. 74–82.

  56. Kidder, D.L., Krishnaswamy, R., and Mapes, R.H., Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis, Chem. Geol., 2003, vol. 198, pp. 335–353.

    Article  Google Scholar 

  57. Kir’yanov, V.V., Succession of acritarch complexes in Precambrian/Cambrian deposits in the East European and Siberian platforms, Abstracts of Papers, 3rd All-Union Symp. on Precambrian and Early Cambrian Paleonotology, Petrozavodsk, 1987, pp. 44–45.

  58. Kir’yanov, V.V., Caledonian cycle in the tectonic history of the Ukraine (Cambrian-Early Devonian). Cambrian Period, in Geologicheskaya istoriya territorii Ukrainy. Paleozoi (Geological History of the Ukrainian Territory: Paleozoic), Tsegel’nyuk, P.D., Ed., Kiev: Naukova Dumka, 1993, pp. 12–24.

    Google Scholar 

  59. Kir’yanov, V.V., Stratigraphy of the oldest Cambrian sediments of the East European and Siberian platforms, Geol. Zh., 2006, no. 2/3, pp. 115–122.

  60. Kolesnikov, A.V., Grazhdankin, D.V., and Maslov, A.V., Arumberia-type structures in the Upper Vendian of the Urals, Dokl. Earth Sci., 2012, vol. 447, no. 1, pp. 1233–1239.

    Article  Google Scholar 

  61. Kolesnikov, A.V., Marusin, V.V., Nagovitsin, K.E., et al., Ediacaran biota in the aftermath of the Kotlinian Crisis: Asha Group of the South Urals, Precambrian Res., 2015, vol. 263, pp. 59–78.

    Article  Google Scholar 

  62. Kolesnikov, A.V., Danelian, T., Gommeaux, M., et al., Arumberiamorph structure in modern microbial mats: implications for Ediacaran palaeobiology, Bull. Soc. Géol. France, 2017, vol. 188(1/2), art. 5. https://doi.org/10.1051/bsgf/2017006

    Article  Google Scholar 

  63. Korenchuk, L.V. and Kir’yanov, V.V., The Late Vendian (Baltic) Substage, in Geologicheskaya istoriya territorii Ukrainy. Dokembrii (Geological History of the Ukrainian Territory: Precambrian), Ryabenko, V.A., Ed., Kiev: Naukova Dumka, 1993.

    Google Scholar 

  64. Kushim, E.A., Golubkova, E.Yu., and Plotkina, Yu.V., Biostratigraphic subdivision of Vendian–Cambrian sedimentary rocks in the southern Ladoga region, Vestn. VGU, Ser. Geol., 2016, no. 4, pp. 18–22.

  65. Kuznetsov, N.B., Alekseev, A.S., Belousova, E.A., et al., Testing the models of Late Vendian evolution of the northeastern periphery of the East European Craton based on the first U/Pb dating of detrital zircons from Upper Vendian sandstones of southeastern White Sea region, Dokl. Earth Sci., 2014, vol. 458, no. 3, pp. 1073–1076.

    Article  Google Scholar 

  66. Kuznetsov, N.B., Alekseev, A.S., Belousova, E.A., et al., First results of U/Pb isotope dating (LA–ICP–MS) of detrital zircons from sandstones of the Lower Cambrian Brusov Formation of the southeastern White Sea region: A constraint for the Lower age limit of the beginning of the Arctida–Baltica collision, Dokl. Earth Sci., 2015, vol. 460, no. 3, pp. 28–32.

    Article  Google Scholar 

  67. Lampitt, R.S. and Antia, A.N., Particle flux in deep seas: regional characteristics and temporal variability, Deep-Sea Res. Part I, 1997, vol. 44, pp. 1377–1403.

    Article  Google Scholar 

  68. Le Guerroué, E., Duration and synchroneity of the largest negative carbon isotope excursion on Earth: The Shuram/Wonoka anomaly, C. R. Geoscience, 2010, vol. 342, pp. 204–214

    Article  Google Scholar 

  69. Lenton, T.M. and Daines, S.J., Biogeochemical transformations in the history of Earth, Annu. Rev. Mar. Sci., 2017, vol. 9, pp. 4.1–4.28.

  70. Lenton, T.M. and Watson, A.J., Redfield Revisited 1. Regulation of nitrate, phosphate, and oxygen in the Ocean, Global Biogeochem. Cycles, 2000, vol. 14, pp. 225–248.

    Article  Google Scholar 

  71. Lenton, T., Boyle, R.A., Poulton, S. W., et al., Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era, Nat. Geosci., 2014, vol. 7, pp. 257–265.

    Article  Google Scholar 

  72. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 2014, vol. 506, pp. 307–315.

    Article  Google Scholar 

  73. Mackenzie, F.T., Ver, L.M., Sabine, C., et al., C, N, P, S global biogeochemical cycles and modelling of global change, in Interactions of C, N, P and S, Biogeochemical Cycles and Global Changes, Wollast, R., Mackenzie, F.T., and Chou, L., Eds., NATO ASI Ser., 1993, vol. 14, pp. 1–61.

    Google Scholar 

  74. Macdonald, F.A., Pruss, S.B., and Strauss, J.V., Trace fossils with spreiten from the late Ediacaran Nama Group, Namibia: complex feeding patterns five million years before the Precambrian–Cambrian boundary, J. Paleontol., 2014, vol. 88, pp. 299–308.

    Article  Google Scholar 

  75. Maslov, A.V. and Podkovyrov, V.N., Redox setting of bottom waters in Neoproterozoic basins in the eastern and northeastern parts of the East European Platform, Litosfera, 2015, no. 5, pp. 30–42.

  76. Maslov, A.V., Grazhdankin, D.V., Podkovyrov, V.N., et al., Composition of sediment provenances and patterns in geological history of the Late Vendian Mezen Basin, Lithol. Miner. Resour, 2008, no. 3, pp. 260–280.

  77. McFadden, K.A., Huang, J., Chu, X., et al., Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 3197–3202.

    Article  Google Scholar 

  78. McManus, J., Berelson, W.M., Klinkhammer, G.P., et al., Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 3453–3473.

    Article  Google Scholar 

  79. Meert, J.G., Levashova, N.M., Bazhenov, M.L., and Landing, E., Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation, Gondwana Res., 2016, vol. 34, pp. 149–157.

    Article  Google Scholar 

  80. Mens, K. and Pirrus, E., Stratigraphic gaps in the Vendian and Cambrian sections of the northern Baltic region, Izv. AN ESSR. Geol., 1987, vol. 36, no. 2, pp. 49–57.

    Google Scholar 

  81. Michaels, A.F. and Silver, M.W., Primary production, sinking fluxes and the microbial food web, Deep-Sea Res. Part I, 1988, vol. 35, pp. 473–490.

    Article  Google Scholar 

  82. Mills, M.M., Ridame, C., Davey, M. et al., Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic, Nature, 2004, vol. 429, pp. 292–294.

    Article  Google Scholar 

  83. Minguez, D., Kodama, K.P., and Hillhouse, J.W., Paleomagnetic and cyclostratigraphic constraints on the synchroneity and duration of the Shuram carbon isotope excursion, Johnnie Formation, Death Valley Region, CA, Precambrian Res., 2015, vol. 266, pp. 395–408.

    Article  Google Scholar 

  84. Morse, J.W. and Luther III, G.W., Chemical influences on trace metal–sulfide interactions in anoxic sediments, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 3373–3378.

    Article  Google Scholar 

  85. Muscente, A.D., Boag, T.H., Bykova, N., and Schiffbauer, J.D., Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life, Earth-Sci. Rev., 2018, vol. 177, pp. 248–264.

    Article  Google Scholar 

  86. Naimo, D., Adamo, P., Imperato, M., and Stanzione, D., Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy, Quat. Int., 2005, vol. 140–141, pp. 53–63.

    Article  Google Scholar 

  87. Nesbitt, H.W. and Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 1982, vol. 19, pp. 715–717.

    Article  Google Scholar 

  88. Noble, S.R., Condon, D.J., Carney, J.N., et al., U-Pb geochronology and global context of the Charnian Supergroup, UK: Constraints on the age of key Ediacaran fossil assemblages, GSA Bull., 2015, vol. 127, pp. 250–265.

    Article  Google Scholar 

  89. Och, L.M., Biogeochemical cycling through the Neoproterozoic-Cambrian transition in China: an integrated study of redox-sensitive elements, Ph. D. Thesis, Univ. College London, 2011.

  90. Pedersen, T.F., Vogel, J.S., and Southon, J.R., Copper and manganese in hemipelagic sediments: diagenetic contrasts, Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 2019–2031.

    Article  Google Scholar 

  91. Piper, D.Z. and Perkins, R.B., A modern vs. Permian black shale – the hydrography, primary productivity, and water-column chemistry of deposition, Chem. Geol., 2004, vol. 206, pp. 177–197.

    Article  Google Scholar 

  92. Planavsky, N.J., Rouxel, O., Bekker, A., et al., The evolution of the marine phosphate reservoir, Nature, 2010, vol. 467, pp. 1088–1090.

    Article  Google Scholar 

  93. Plewa, K., Meggers, H., Kuhlmann, H., et al., Geochemical distribution patterns as indicators for productivity and terrigenous input off NW Africa, Deep-Sea Res. Part I, 2012, vol. 66, pp. 51–66.

    Article  Google Scholar 

  94. Podkovyrov, V.N., Grazhdankin, D.V., and Maslov, A.V., Lithogeochemistry of the Vendian fine-grained clastic rocks in the southern Vychegda Trough, Lithol. Miner. Resour, 2011, no. 5, pp. 427–446.

  95. Poulton, S.W. and Canfield, D.E., Ferruginous conditions: a dominant feature of the ocean through Earth’s history, Elements, 2011, vol. 7, pp. 107–112.

    Article  Google Scholar 

  96. Rimmer, S.M., Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA), Chem. Geol., 2004, vol. 206, pp. 373–391.

    Article  Google Scholar 

  97. Robison, B.H., Deep pelagic biology, J. Exp. Mar. Biol. Ecol., 2004, vol. 300, pp. 253–272.

    Article  Google Scholar 

  98. Robinson, C., Steinberg, D.K., Anderson, T.R., et al., Mesopelagic zone ecology and biogeochemistry – a synthesis, Deep-Sea Res. Part II, 2010, vol. 57, pp. 1504–1518.

    Article  Google Scholar 

  99. Rogov, V., Marusin, V., Bykova, N., et al., The oldest evidence of bioturbation on Earth, Geology, 2012, vol. 40(5), pp. 395–398.

    Article  Google Scholar 

  100. Rogov, V., Marusin, V., Bykova, N., et al., The oldest evidence of bioturbation on Earth: Reply, Geology, 2013, vol. 41(5), e290. https://doi.org/10.1130/G34237Y.1

    Article  Google Scholar 

  101. Rothman, D.H., Hayes, J.M., and Summons, R.E., Dynamics of the Neoproterozoic carbon cycle, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 8124–8129.

    Article  Google Scholar 

  102. Sahoo, S.K., Planavsky, N.J., Jiang, G., et al., Oceanic oxygenation events in the anoxic Ediacaran ocean, Geobiology, 2016, vol. 14, pp. 457–468.

    Article  Google Scholar 

  103. Sawaki, Y., Ohno, T., Tahata, M., et al., The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China, Precambrian Res, 2010, vol. 176, pp. 46–64.

    Article  Google Scholar 

  104. Schnetger, B., Brumsack, H.-J., Schale, H., et al., Geochemical characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study, Deep-Sea Res. Part II, 2000, vol. 47, pp. 2735–2768.

    Article  Google Scholar 

  105. Schrag, D.P., Higgins, J.A., Macdonald, F.A., and Johnston, D.T., Authigenic carbonate and the history of the global carbon cycle, Science, 2013, vol. 339, pp. 540–543.

    Article  Google Scholar 

  106. Seibel, B.A., Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones, J. Exp. Biol., 2011, vol. 214, pp. 326–336.

    Article  Google Scholar 

  107. Shaw, T.J., Gieskes, J.M., and Jahnke, R.A., Early diagenesis in differing depositional environments: the response of transition metals in pore water, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1233–1246.

    Article  Google Scholar 

  108. Shields, G.A., Earth system transition during the Tonian–Cambrian interval of biological innovation: nutrients, climate, oxygen and the marine organic carbon capacitor, in Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier, Brasier, A.T., McIlroy, D., and McLoughlin, N., Eds., Geol. Soc. London Spec. Publ. 2016, vol. 448, pp. 161–177.

    Google Scholar 

  109. Sperling, E.A., Carbone, C., Strauss, J.V., et al., Oxygen, facies, and secular controls on the appearance of Cryogenian and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada, GSA Bull., 2016, vol. 128, pp. 558–575.

    Article  Google Scholar 

  110. Stoll, H.M., Ziveri, P., Shimizu, N., et al., Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea, Deep-Sea Res. Part II, 2007, vol. 54, pp. 581–600.

    Article  Google Scholar 

  111. Strakhov, N.M., Problemy geokhimii sovremennogo okeanskogo litogeneza (Problems in the Geochemistry of the Modern Oceanic Lithogenesis), Moscow: Nauka, 1976.

    Google Scholar 

  112. Sun, Y.-Z. and Püttmann, W., The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen Basin, Germany, Org. Geochem., 2000, vol. 31, pp. 1143–1161.

    Article  Google Scholar 

  113. Sunda, W.G., Barber, R.T., and Huntsman, S.A., Phytoplankton growth in nutrient rich seawater-importance of copper-manganese cellular interactions, J. Mar. Res., 1981, vol. 39, pp. 567–586.

    Google Scholar 

  114. Torres, M.E., Brumsack, H.J., Bohrmann, G., and Emeis, K.C., Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts, Chem. Geol., 1996, vol. 127, pp. 125–139.

    Article  Google Scholar 

  115. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell 1985. Translated under the title Kontinental’naya kora: ee sostav i evolyutsiya, Moscow: Mir, 1988, p. 384.

  116. Trappe, J., Phanerozoic phosphorite depositional systems: a dynamic model for a sedimentary resource system (Lecture Notes in Earth Sciences, vol. 76), Berlin, Heidelberg: Springer, 1998.

  117. Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 2006, vol. 232, pp. 12–32.

  118. Turgeon, S. and Brumsack, H.J., Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian boundary events (Cretaceous) in the Umbria–Marche Basin of central Italy, Chem. Geol., 2006, vol. 234, pp. 321–339.

    Article  Google Scholar 

  119. Ulloa, O., Canfield, D.E., DeLong, E.F., et al., Microbial oceanography of anoxic oxygen minimum zones, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 15996–16003.

    Article  Google Scholar 

  120. Van der Weijden, C.H., Pitfalls of normalization of marine geochemical data using a common divisor, Mar. Geol., 2002, vol. 184, pp. 167–187.

    Article  Google Scholar 

  121. Velikanov, V.A., Ukrainian hypostratotype of the Vendian System, Geol. Zh., 2011, no. 1, pp. 42–49.

  122. Velikanov, V.A., Aseeva, E.A., and Fedonkin, M.A., Vend Ukrainy (Vendian in the Ukraine), Kiev: Naukova Dumka, 1983.

    Google Scholar 

  123. Velikanov, V.A., Korenchuk, L.V., Kir’yanov, V.V., et al., Vend Podolii. Putevoditel’ ekskursii III mezhdunarodnogo simpoziuma po kembriiskoi sisteme i granitse venda i kembriya (Vendian in the Podolian Region: Excursion Guidebook for the 3rd International Symposium on Cambrian System at the Vendian/Cambrian Boundary), Kiev: IGN AN Ukrainy, 1990.

  124. Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie (Vendian System: Historical-Geological and Paleontological Substantiation), Sokolov, B.S. and Fedonkin, M.A., Eds., Moscow: Nauka, 1985, vol. 2.

    Google Scholar 

  125. Wang, W., Guan, C., Zhou, C., et al., Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution, Geobiology, 2017, vol. 15, pp. 552–571.

    Article  Google Scholar 

  126. Wedepohl, K.H. Environmental influences on the chemical composition of shales and clays, in Physics and Chemistry of the Earth, Ahrens, L.H., Press, F., Runcorn, S.K., and Urey, H.C., Eds., Oxford: Pergamon, 1971, pp. 305–333.

    Google Scholar 

  127. Wedepohl, K.H. The composition of the upper Earth’s crust and the natural cycles of selected metals, in Metals and Their Compounds in the Environment, Merian, E., Ed., Weinheim: VCH-Verlagsgesellschaft, 1991, pp. 3–17.

    Google Scholar 

  128. Williams, G.E. and Schmidt, P.W., Shuram–Wonoka carbon isotope excursion: Ediacaran revolution in the world ocean’s meridional overturning circulation, Geosci. Frontiers., 2018, vol. 9(2), pp. 391–402.

    Article  Google Scholar 

  129. Wright, J.J., Konwar, K.M., and Hallam, S.J., Microbial ecology of expanding oxygen minimum zones, Nature Rev. Microbiol., 2012, vol. 10, pp. 381–394.

    Article  Google Scholar 

  130. Xiao, S., Narbonne, G.M., Zhou, C., et al., Towards an Ediacaran time scale: problems, protocols, and prospects, Episodes, 2016, vol. 39, pp. 540–555.

    Article  Google Scholar 

  131. Yarincik, K.M., Murray, R.W., and Peterson, L.C., Climatically sensitive eolian and hemipelagic deposits in the Cariaco Basin, Venezuela, over past 578 000 years: results from Al/Ti and K/Al, Paleoceanography, 2000, vol. 15, pp. 210–228.

    Article  Google Scholar 

  132. Yeasmin, R., Chen, D., Fu, Y., et al., Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China, J. Asian Earth Sci., 2017, vol. 134, pp. 365–386.

    Article  Google Scholar 

  133. Yuan, X., Chen, Z., Xiao, S., et al., An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes, Nature, 2011, vol. 470, pp. 390–393.

    Article  Google Scholar 

  134. Yudovich, Ya.E. and Ketris, M.P., Osnovy litokhimii (Fundamentals of Lithochemistry), St. Petersburg: Nauka, 2000.

    Google Scholar 

  135. Zhu, M., Zhang, J., and Yang, A., Integrated Ediacaran (Sinian) chronostratigraphy of South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 254, pp. 7–61.

    Article  Google Scholar 

  136. Ziveri, P., de Bernardi, B., Baumann, K.-H., et al., Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean, Deep-Sea Res. Part II, 2007, vol. 54, pp. 659–675.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 15-05-01512).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Maslov, D. V. Grazhdankin or V. N. Podkovyrov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.V., Grazhdankin, D.V. & Podkovyrov, V.N. Late Vendian Kotlinian Crisis on the East European Platform: Lithogeochemical Indicators of Depositional Environment. Lithol Miner Resour 54, 1–26 (2019). https://doi.org/10.1134/S0024490219010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490219010048

Navigation