Skip to main content
Log in

Non-satisfiability of a positivity condition for commutator-free exponential integrators of order higher than four

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider commutator-free exponential integrators as put forward in Alverman and Fehske (J Comput Phys 230:5930–5956, 2011). For parabolic problems, it is important for the well-definedness that such an integrator satisfies a positivity condition such that essentially it only proceeds forward in time. We prove that this requirement implies maximal convergence order of four for real coefficients, which has been conjectured earlier by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Note that the situation is similar to that encountered for exponential splitting methods. For this class of time integrators, no methods of order greater than two exist with only positive real coefficients. This was first shown in [22], see also [13]. The ensuing instability can be avoided by splitting with complex coefficients [14], see also [10]. Splitting methods of high order with complex coefficients have been constructed for example in [5]. Similarly, for exponential commutator-free Magnus-type methods, stable high-order schemes with complex coefficients have been derived in [7]. Moreover, unconventional schemes involving additionally evaluation of some commutators are introduced there which are stable for parabolic problems. An error analysis of high-order commutator-free exponential integrators applied to semi-discretizations of parabolic problems is given in [8].

References

  1. Alverman, A., Fehske, H.: High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230, 5930–5956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alverman, A., Fehske, H., Littlewood, P.: Numerical time propagation of quantum systems in radiation fields. New J. Phys. 14, 105008 (2012)

    Article  Google Scholar 

  3. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Effective approximation for the linear time-dependent Schrödinger equation. Found. Comput. Math. 14, 689–720 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential. Proc. R. Soc. A 472, 20150733 (2016)

    Article  MATH  Google Scholar 

  5. Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comp. 82, 1559–1576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanes, S., Casas, F., Oteo, J., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2008)

    Article  MathSciNet  Google Scholar 

  7. Blanes, S., Casas, F., Thalhammer, M.: High-order commutator-free quasi-Magnus integrators for non-autonomous linear evolution equations. Comput. Phys. Commun. 220, 243–262 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blanes, S., Casas, F., Thalhammer, M.: Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type. IMA J. Numer. Anal. 38, 743–778 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanes, S., Moan, P.: Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems. Appl. Numer. Math. 56, 1519–1537 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT Numer. Math. 49, 487–508 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Celledoni, E.: Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators. Group Theory Numer. Anal. CRM Proc. Lecture Notes 39, 77–90 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Celledoni, E., Marthinsen, A., Owren, B.: Commutator-free Lie-group methods. Future Gen. Comput. Syst. 19(3), 341–352 (2003)

    Article  Google Scholar 

  13. Goldman, D., Kaper, T.: \(n\)th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33(1), 349–367 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT Numer. Math. 49, 527–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  16. Iserles, A., Nørsett, S.: On the solution of linear differential equations on Lie groups. Phil. Trans. R. Soc. Lond. A 357, 983–1019 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–000 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Owren, B.: Order conditions for commutator-free Lie group methods. J. Phys. A: Math. Gen. 39, 5585–5599 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Park, T., Light, J.: Unitary quantum time evolution by iterative Lanczos reduction. J. Chem. Phys. 85, 5870–5876 (1986)

    Article  Google Scholar 

  21. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sheng, Q.: Solving linear partial differential equations by exponential splittings. IMA J. Numer. Anal. 9(2), 199–212 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hofstätter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported in part by the Austrian Science Fund (FWF) under Grant P30819-N32 and the Vienna Science and Technology Fund (WWTF) under Grant MA14-002.

Appendices

Proof of the order conditions (7)–(10)

For the global error to have order \(p=5\) it is required that the local error have convergence order \(p+1=6\). If, without restriction of generality, we consider only the first integration step for the special problem (5), this condition for the local error is written as

$$\begin{aligned} \mathrm {e}^{\tau b_J A_0+\tau ^2 y_J A_1}\cdots \mathrm {e}^{\tau b_1 A_0+\tau ^2 y_1 A_1}u_0 = u(\tau ) +O(\tau ^6). \end{aligned}$$
(18)

A Taylor expansion of the left-hand side leads to (let \({\mathbf {k}}=(k_1,\ldots ,k_m), \ |{\mathbf {k}}| =\sum _{l=1}^m k_l\))

$$\begin{aligned}&\mathrm {e}^{\tau b_J A_0+\tau ^2 y_J A_1}\cdots \mathrm {e}^{\tau b_1 A_0+\tau ^2 y_1 A_1}u_0 = c^{(J)}_\emptyset u_0\\&\quad +\, \sum _{\begin{array}{c} {\mathbf {k}}=(k_1,\ldots k_m)\\ m\ge {1}, k_l\in \{0,1\}, {|{\mathbf {k}}|+m}\le 5 \end{array}} \tau ^{{|{\mathbf {k}}|+m}} c^{(J)}_{k_1\dots k_m}A_{k_1}\cdots A_{k_m}u_0 + O(\tau ^6). \end{aligned}$$

Here for \(J=1\) we have [note that already a subset of coefficients suffices to derive the order conditions (7)–(10)],

$$\begin{aligned}&c^{(1)}_\emptyset =1,\quad c^{(1)}_{0}=b_1,\quad c^{(1)}_{1}=y_1,\quad c^{(1)}_{01}=\frac{1}{2}b_1y_1,\quad c^{(1)}_{11}=\frac{1}{2}y_1^2,\\&c^{(1)}_{001}=\frac{1}{6}b_1^2y_1,\quad c^{(1)}_{011}=\frac{1}{6}b_1y_1^2, \quad c^{(1)}_{0001}=\frac{1}{24}b_1^3y_1, \end{aligned}$$

and for \(J\ge 2\) the coefficients can be computed recursively,

$$\begin{aligned}&c^{(J)}_\emptyset =c^{(J-1)}_\emptyset ,\quad c^{(J)}_{0}=c^{(J-1)}_{0}+ b_Jc^{(J-1)}_\emptyset ,\quad c^{(J)}_{1}=c^{(J-1)}_{1}+ y_Jc^{(J-1)}_\emptyset ,\\&c^{(J)}_{01}=c^{(J-1)}_{01}+b_Jc^{(J-1)}_{1} +\frac{1}{2}b_Jy_Jc^{(J-1)}_\emptyset ,\\&c^{(J)}_{11}=c^{(J-1)}_{11}+y_Jc^{(J-1)}_{1} +\frac{1}{2}y_J^2c^{(J-1)}_\emptyset ,\\&c^{(J)}_{001}=c^{(J-1)}_{001}+b_Jc^{(J-1)}_{01} +\frac{1}{2}b_J^2c^{(J-1)}_{1}+\frac{1}{6}b_J^2y_Jc^{(J-1)}_\emptyset ,\\&c^{(J)}_{011}=c^{(J-1)}_{011}+b_Jc^{(J-1)}_{11} +\frac{1}{2}b_Jy_Jc^{(J-1)}_{1}+\frac{1}{6}b_Jy_J^2c^{(J-1)}_\emptyset ,\\&c^{(J)}_{0001}=c^{(J-1)}_{0001}+b_Jc^{(J-1)}_{001} +\frac{1}{2}b_J^2c^{(J-1)}_{01}+\frac{1}{6}b_J^3c^{(J-1)}_{1} +\frac{1}{24}b_J^3y_Jc^{(J-1)}_\emptyset . \end{aligned}$$

An inductive argument involving straightforward but laborious calculations gives

$$\begin{aligned}&c^{(J)}_\emptyset =1,\quad c^{(J)}_{0}= \sum _{j=1}^Jb_j,\quad c^{(J)}_{1} = \sum _{j=1}^Jy_j, \nonumber \\&c^{(J)}_{01} = c^{(J)}_{0}c^{(J)}_{1}-\sum _{j=1}^J{\widehat{b}}_jy_j, \quad c^{(J)}_{11} = \frac{1}{2}(c^{(J)}_{1})^2,\nonumber \\&c^{(J)}_{001}=c^{(J)}_{0}c^{(J)}_{01}-\frac{1}{2}(c^{(J)}_{0})^2c^{(J)}_{1} -\frac{1}{2}\sum _{j=1}^J\left( {\widehat{b}}_{j}^2+\frac{1}{12}b_{j}^2\right) y_{j}, \nonumber \\&c^{(J)}_{011} =\frac{1}{2}\sum _{j=1}^{J}\left( {\widehat{y}}_{j}^2+\frac{1}{12}y_{j}^2\right) b_{j},\nonumber \\&c^{(J)}_{0001} = c^{(J)}_{0}c^{(J)}_{001}- \frac{1}{2}(c^{(J)}_{0})^2c^{(J)}_{01} +\frac{1}{6}(c^{(J)}_{0})^3c^{(J)}_{1}-\frac{1}{6}\sum _{j=1}^{J}\left( {\widehat{b}}_{j}^3+\frac{1}{4}{\widehat{b}}_{j}b_{j}^2\right) y_{j}.\qquad \quad \end{aligned}$$
(19)

Repeated differentiation of the differential equation (5) yields

$$\begin{aligned}&u(0)=u_0, \quad u'(0) = A_0u_0, \quad u''(0) = (A_1+A_0^2)u_0,\\&u'''(0) = (A_0A_1+2A_1A_0+A_0^3)u_0,\\&u^{(4)}(0) = (3A_1^2+A_0^2A_1+2A_0A_1A_0+A_1A_0^2+A_0^4)u_0,\\&u^{(5)}(0) = (3A_0A_1^2+4A_1A_0A_1+8A_1^2A_0+A_0^3A_1\\&\qquad \qquad \quad +\,2A_0^2A_1A_0+3A_0A_1A_0^2 +4A_1A_0^3+A_0^5)u_0. \end{aligned}$$

Thus for the Taylor expansion of the right-hand side of (18) we obtain

$$\begin{aligned} u(\tau )= & {} \sum _{q=0}^5\frac{\tau ^q}{q!}u^{(q)}(0) + O(\tau ^6) = s_{\emptyset }u_0\\&+\sum _{\begin{array}{c} {{\mathbf {k}}=}(k_1,\ldots k_m)\\ m\ge {1}, k_l\in \{0,1\}, {|{\mathbf {k}}|+m} \le 5 \end{array}} \tau ^{{|{\mathbf {k}}|+m}} {s}_{k_1\dots k_m}A_{k_1}\cdots A_{k_m}u_0 + O(\tau ^6) \end{aligned}$$

with coefficients [only those corresponding to the subset of coefficients as in (19)]

$$\begin{aligned}&s_{\emptyset }=\frac{1}{0!}=1,\quad s_0=\frac{1}{1!}=1,\quad s_1=\frac{1}{2!}=\frac{1}{2}, \quad s_{01}=\frac{1}{3!}=\frac{1}{6},\quad s_{11}=\frac{3}{4!}=\frac{1}{8},\nonumber \\&s_{001}=\frac{1}{4!}=\frac{1}{24},\quad s_{011}=\frac{3}{5!}=\frac{1}{40}, \quad s_{0001}=\frac{1}{5!}=\frac{1}{120}. \end{aligned}$$
(20)

Equating corresponding coefficients in (19) and (20) leads to the order conditions (7)–(10).

A geometric lemma

Lemma 1

Let \(\{a_1,\ldots ,a_m\}\) be a linearly independent set of vectors in \({\mathbb {R}}^n\) and \(S\in {\mathbb {R}}^{n\times n}\) symmetric positive definite. Further let \(c=(\gamma _1,\ldots ,\gamma _m)^T\in {\mathbb {R}}^m\) and \(\delta \in {\mathbb {R}}\). Then the intersection \({\mathcal {I}}\) of the m hyperplanes in \({\mathbb {R}}^n\) given by the equations \(a_1^Tx=\gamma _1,\ldots ,a_m^Tx=\gamma _m\) intersects the hyper-ellipsoid \({\mathcal {Q}}\) given by the equation \(x^TSx=\delta \) if and only if it holds

$$\begin{aligned} c^T\varGamma ^{-1}c \le \delta , \end{aligned}$$
(21)

where \(\varGamma = (a_i^TS^{-1}a_j)_{i,j=1}^m\) denotes the Gram matrix of the vectors \(a_1,\ldots ,a_m\) with respect to the scalar product \(x^TS^{-1}y\).

Proof

First we consider the special case \(S=I_n\) (identity matrix), where \({\mathcal {Q}}\) is a hyper-sphere. In this case \({\mathcal {I}}\) intersects \({\mathcal {Q}}\) if and only if the point \(x_*\in {\mathcal {I}}\) of minimal norm satisfies

$$\begin{aligned} \Vert x_*\Vert ^2=x_*^Tx_* \le \delta . \end{aligned}$$
(22)

It is easy to see that this point \(x_*\) lies in the linear subspace of \({\mathbb {R}}^n\) spanned by \(a_1, \ldots a_m\) (the normal vectors to the given hyperplanes), i.e., there exists \(b=(\beta _1,\ldots ,\beta _m)^T\in {\mathbb {R}}^m\) such that

$$\begin{aligned} x_* = \beta _1a_1+\dots +\beta _ma_m = Ab, \end{aligned}$$

where \(A=[a_1\ \cdots \ a_m]\in {\mathbb {R}}^{n\times m}\). Because \(x_*\in {\mathcal {I}}\) it holds

$$\begin{aligned} \varGamma b = A^TAb = A^Tx_*=c, \end{aligned}$$

and thus

$$\begin{aligned} x_*^Tx_* = b^TA^TAb = b^T\varGamma b = c^T\varGamma ^{-1}c, \end{aligned}$$

which shows that (22) is equivalent to (21). This completes the proof for the special case \(S=I_n\).

For the general case, the symmetric positive definite matrix S can be written as

$$\begin{aligned} S=X\varLambda X^T \end{aligned}$$

with \(\varLambda =\mathrm {diag}(\lambda _1,\ldots ,\lambda _n)\), where \(\lambda _j>0\) are the eigenvalues of S, and X orthogonal. We define \({\widetilde{a}}_j=\varLambda ^{-1/2}X^Ta_j\), \(j=1,\ldots ,m\). Then under the transformation of variables \(\widetilde{x}=\varLambda ^{1/2}X^Tx\), the equation \({\widetilde{a}}_j^T{\widetilde{x}}=\gamma _j\) is equivalent to \(a_j^Tx=\gamma _j\) and \({\widetilde{x}}^T{\widetilde{x}}=\delta \) is equivalent to \(x^TSx=\delta \). For these transformed equations the special case from above is applicable. Using \({\widetilde{A}} = [{\widetilde{a}}_1\ \cdots \ {\widetilde{a}}_m] = \varLambda ^{-1/2}X^TA\) with \(A=[a_1\ \cdots \ a_m]\) it follows that for the transformed equations the corresponding Gram matrix satisfies \({\widetilde{\varGamma }}={\widetilde{A}}^T{\widetilde{A}}=A^TX\varLambda ^{-1}X^TA=A^TS^{-1}A = \varGamma \) as claimed. \(\square \)

Maple code for checking (16)=(17)

Here, the Maple identifiers s, s1, bb, dd, eSe, eSd, dSd correspond to \(\sigma \), \({\widetilde{\sigma }}\), \(b_{J+1}\), \(d_{J+1}\), \(e^TS^{-1}e\), \(e^TS^{-1}d\), \(d^TS^{-1}d\), respectively.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofstätter, H., Koch, O. Non-satisfiability of a positivity condition for commutator-free exponential integrators of order higher than four. Numer. Math. 141, 681–691 (2019). https://doi.org/10.1007/s00211-018-1015-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-1015-x

Mathematics Subject Classification

Navigation