1932

Abstract

This is a memoir relating how the author became a geomicrobiologist and how he practiced his specialty. Born in Germany and receiving his early schooling in Berlin, he completed his secondary education, followed by college and graduate school training, after emigration to the United States in 1940. After attaining a PhD degree in 1951, he spent his entire professional career as a faculty member of the Department of Biology at Rensselaer Polytechnic Institute (RPI) in Troy, New York. He was introduced to geomicrobiology in 1959 by a question from a colleague in the Department of Geology at RPI concerning the recent discovery of acidophilic iron-oxidizing, autotrophic bacteria in acid coal mine drainage. This led him to investigate bacterial interaction with metal sulfides, Mn(II) and Mn(IV) on land and in the sea, chromate, and bauxite; to teach a course in geomicrobiology; and to write a textbook on the subject, first published in 1981.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-042711-105342
2012-05-30
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/40/1/annurev-earth-042711-105342.html?itemId=/content/journals/10.1146/annurev-earth-042711-105342&mimeType=html&fmt=ahah

Literature Cited

  1. Arcuri EJ, Ehrlich HL. 1979. Cytochrome involvement in Mn(II) oxidation by two marine bacteria. Appl. Environ. Microbiol. 37:916–23 [Google Scholar]
  2. Arcuri EJ, Ehrlich HL. 1980. Electron transfer coupled to Mn(II) oxidation by two deep-sea Pacific Ocean isolates. Biogeochemistry of Ancient and Modern Environments PA Trudinger, MR Walter, BJ Ralph 339–44 Berlin: Springer-Verlag [Google Scholar]
  3. Bertani G. 1953. Lysogenic versus lytic cycle of phage multiplication. Cold Spring Harb. Symp. Quant. Biol. 18:65–70 [Google Scholar]
  4. Boivin A. 1947. Bactéries et Virus Paris: Presses Univ. France, 2nd. ed.
  5. Bopp LH, Chakrabarty AM, Ehrlich HL. 1983. Chromate resistance plasmid in Pseudomonas fluorescens. J. Bacteriol. 155:1105–9 [Google Scholar]
  6. Bopp LH, Ehrlich HL. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150:426–31 [Google Scholar]
  7. Butkevich VS. 1928. The formation of marine iron-manganese deposits and the role of microorganisms in the latter. Wissenschaft. Meeresinst. Ber. 3:7–80 [Google Scholar]
  8. Colmer AR, Hinkle ME. 1947. The role of microorganisms in acid mine drainage: a preliminary report. Science 106:253–56 [Google Scholar]
  9. Colmer AR, Temple KL, Hinkle ME. 1950. An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J. Bacteriol. 59:317–28 [Google Scholar]
  10. De Carlo MR, Sarles WB, Knight SG. 1953. Lysogenicity of Bacillus megaterium. J. Bacteriol. 65:53–55 [Google Scholar]
  11. DeLeo PC, Ehrlich HL. 1994. Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous cultures. Appl. Microbiol. Biotechnol. 40:756–59 [Google Scholar]
  12. Demerec M, Fano U. 1945. Bacteriophage resistant mutants in Escherichia coli. Genetics 30:119–36 [Google Scholar]
  13. Den Dooren de Jong LE. 1931. Studien über Bakteriophagie. I. Über Bac. megaterium und den darin anwesenden Bakteriophagen. Zbl. Bakteriol. Parasitenk. I Abt. Orig. 120:1–15 [Google Scholar]
  14. Dubos RJ. 1945. The Bacterial Cell in Its Relation to Problems of Virulence, Immunity and Chemotherapy with an addendum by C.F. Robinow Cambridge, MA: Harvard University Press [Google Scholar]
  15. Ehrlich HL. 1948. On the nature of the virus including some original experiments on a chemotherapeutic aspect of the virus of feline pneumonitis BS thesis Dep. Biochem. Sci., Harvard Univ. Cambridge, MA:34
  16. Ehrlich HL. 1949. Lysogenesis of Bacillus megaterium MS thesis Dep. Agric. Bacteriol., Univ. Wis. Madison:31 [Google Scholar]
  17. Ehrlich HL. 1951. Some physiological aspects of lysogenic strains of Bacillus megaterium PhD thesis Univ. Wis. Madison:113 [Google Scholar]
  18. Ehrlich HL. 1961. Bacterial ecology of certain minerals. Proc. Annu. Meet. Soc. Am. Bacteriol., 61st, Chicago Apr. 23–27 54 (Abstr. A14) Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  19. Ehrlich HL. 1962. Observations on microbial association with some minerals. Biogeochemistry of Sulfur Isotopes ML Jensen 153–68 Proc. NSF Symp., April 12–14 New Haven, CT: Yale Univ. [Google Scholar]
  20. Ehrlich HL. 1963a. Bacteriology of manganese nodules. I. Bacterial action on manganese in nodule enrichments. Appl. Microbiol. 11:15–19 [Google Scholar]
  21. Ehrlich HL. 1963b. Microorganisms in acid drainage from a copper mine. J. Bacteriol. 86:350–52 [Google Scholar]
  22. Ehrlich HL. 1963c. Bacterial action on orpiment. Econ. Geol. 58:991–94 [Google Scholar]
  23. Ehrlich HL. 1964. Bacterial oxidation of arsenopyrite and enargite. Econ. Geol. 59:1306–12 [Google Scholar]
  24. Ehrlich HL. 1966. Reactions with manganese by bacteria from marine ferromanganese nodules. Dev. Ind. Microbiol. 7:279–86 [Google Scholar]
  25. Ehrlich HL. 1968. Bacteriology of manganese nodules. II. Manganese oxidation by cell-free extract from a manganese nodule bacterium. Appl. Microbiol. 16:197–202 [Google Scholar]
  26. Ehrlich HL. 1971. Bacteriology of manganese nodules. V. Effect of hydrostatic pressure on bacterial oxidation of MnII and reduction of MnO2. Appl. Microbiol. 21:306–10 [Google Scholar]
  27. Ehrlich HL. 1972. The role of microbes in manganese nodule genesis and degradation. Ferromanganese Deposits on the Ocean Floor DR Horn 63–70 Washington, DC: The Off. Int. Decade Ocean Explor. Natl. Sci. Found. [Google Scholar]
  28. Ehrlich HL. 1974. Response of some activities of ferromanganese nodule bacteria to hydrostatic pressure. Effect of the Ocean Environment on Microbial Activities RR Colwell, RY Morita 208–21 Baltimore, MD: University Park Press [Google Scholar]
  29. Ehrlich HL. 1975. The formation of ores in the sedimentary environment of the deep sea with microbial participation: the case for ferromanganese concretions. Soil Sci. 119:36–41 [Google Scholar]
  30. Ehrlich HL. 1976. Manganese as an energy source for bacteria. Environmental Biogeochemistry. Vol. 2: Metal Transfer and Ecological Mass Balances JO Nriagu 633–44 Ann Arbor, MI: Ann Arbor Sci. [Google Scholar]
  31. Ehrlich HL. 1977. Bacterial leaching of a low-grade chalcopyrite ore with different lixiviants. Conference Bacterial Leaching 1977. Gesellschaft Biotechnologische Forschung mbH Braunschweig-Stöckheim W Schwartz 145–55 Weinheim, Ger.: Verlag Chem.
  32. Ehrlich HL. 1978. Inorganic energy sources for chemolithotrophic and mixotrophic bacteria. Geomicrobiol. J. 1:65–83 [Google Scholar]
  33. Ehrlich HL. 1980. Bacterial leaching of manganese ores. Biogeochemistry of Ancient and Modern Environments. Proc. 4th ISEB PA Trudinger, MR Walter, BJ Ralph 609–14 Berlin: Springer-Verlag [Google Scholar]
  34. Ehrlich HL. 1982. Enhanced removal of Mn2+ from seawater by marine sediments and clay minerals in the presence of bacteria. Can. J. Microbiol. 28:1389–95 [Google Scholar]
  35. Ehrlich HL. 1983. Manganese-oxidizing bacteria from a hydrothermally active area on the Galapagos Rift. Ecol. Bull. 35:357–66 [Google Scholar]
  36. Ehrlich HL. 1985. Mesophilic manganese-oxidizing bacteria from hydrothermal discharge areas at 21º north on the East Pacific Rise. Planetary Ecology DW Caldwell, JA Brierley, CL Brierley 186–94 New York: Van Nostrand Reinhold [Google Scholar]
  37. Ehrlich HL. 1986. Bacterial leaching of silver from a silver-containing mixed sulfide ore by a continuous process. Fundamental and Applied Biohydrometallurgy RW Lawrence, RMR Branion, HG Ebner 77–88 Amsterdam, Netherlands: Elsevier Sci. B.V. [Google Scholar]
  38. Ehrlich HL. 1988a. Bioleaching of silver from a mixed sulfide ore in a stirred reactor. Biohydrometallurgy PP Norris, DP Kelly 223–31 Kew Surrey, UK: Sci. Technol. Lett. [Google Scholar]
  39. Ehrlich HL. 1988b. Bioleaching of manganese by marine bacteria. Proc. 8th Int. Biotechnol. Symp. G Durand, L Bobichon, J Florent 21094–105 Paris: Soc. Française Microbiol. [Google Scholar]
  40. Ehrlich HL. 1993a. Electron transfer from acetate to the surface of MnO2 particles by a marine bacterium. J. Ind. Microbiol. 12:121–28 [Google Scholar]
  41. Ehrlich HL. 1993b. A possible mechanism for the transfer of reducing power to insoluble mineral oxide in bacterial respiration. Biohydrometallurgical Technologies AE Torma, ML Apel, CL Brierley 415–22 Warrendale, PA: The Miner. Met. Mater. Soc. [Google Scholar]
  42. Ehrlich HL. 2000a. Ocean manganese nodules: biogenesis and bioleaching possibilities. Miner. Metall. Process. 17:121–28 [Google Scholar]
  43. Ehrlich HL. 2000b. ZoBell and his contributions to the geosciences. Microbial Biosystems: New Frontiers CR Bell, M Brylinsky, P Johnson-Green 57–62 Halifax: Atl. Can. Soc. Microb. Ecol. [Google Scholar]
  44. Ehrlich HL. 2004. A brief history of the International Symposia on Environmental Biogeochemistry (ISEB). Soil Sci. Plant Nutr. 50:789–91 [Google Scholar]
  45. Ehrlich HL, Arcuri EJ. 1979. Fractionation of Mn(II)-oxidizing activity in two strains of Oceanospirillum. Proc. Annu. Meet. Am. Soc. Microbiol., 79th, Los Angeles May 4–8 190 (Abstr. N66) Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  46. Ehrlich HL, Fox SI. 1967. Copper sulfide precipitation by yeasts from acid mine-waters. Appl. Microbiol. 15:135–39 [Google Scholar]
  47. Ehrlich HL, Ghiorse WC, Johnson GL. 1972. Distribution of microbes in manganese nodules from the Atlantic and Pacific Oceans. Dev. Ind. Microbiol. 13:57–65 [Google Scholar]
  48. Ehrlich HL, Newman DK. 2009. Geomicrobiology Boca Raton, FL: CRC Press5th ed.
  49. Ehrlich HL, Pfau CJ. 1957. Study of plaque variation of Bacillus megaterium phage. Can. J. Microbiol. 3:1011–14 [Google Scholar]
  50. Ehrlich HL, Salerno JC. 1990. Energy coupling in Mn2+ oxidation by a marine bacterium. Arch. Microbiol. 154:12–17 [Google Scholar]
  51. Ehrlich HL, Segel IH. 1959. Carbon balance for Bacillus megaterium growing in a glucose-mineral salts medium. J. Bacteriol. 77:110–13 [Google Scholar]
  52. Ehrlich HL, Wickert LM. 1997. Bacterial action on bauxites in columns fed with full-strength and dilute sucrose-mineral salts medium. Biotechnology and the Mining Environment SP-97–1 L Lortie, P Bédard, WD Gould 74–89 Ottawa: CANMET Nat. Resour. Can. [Google Scholar]
  53. Ehrlich HL, Wickert LM, Noteboom D, Doucet J. 1995. Weathering of pisolitic bauxite by heterotrophic bacteria. Biohydrometallurgical Processing T Vargas, CA Jerez, JV Wiertz, H Toledo 1395–403 Santiago: Univ. Chile [Google Scholar]
  54. Ehrlich HL, Yang SH, Mainwaring JD Jr. 1973. Bacteriology of manganese nodules. VI. Fate of copper, nickel, cobalt, and iron during bacterial and chemical reduction of the Mn(IV). Z. Allg. Mikrobiol. 13:39–48 [Google Scholar]
  55. Ehrlich HL, Zapkin MA. 1985. Manganese-rich layers in calcareous deposits along the western shore of the Dead Sea may have a bacterial origin. Geomicrobiol. J. 4:207–21 [Google Scholar]
  56. Fox SI. 1967. Bacterial oxidation of simple copper sulfides PhD thesis Rensselaer Polytechn. Inst. Troy, N.Y.:253
  57. Ghiorse WC, Ehrlich HL. 1976. Electron transport components of the MnO2 reductase system and location of the terminal reductase in a marine bacillus. Appl. Environ. Microbiol. 31:977–85 [Google Scholar]
  58. Goldberg ED, Arrhenius GOS. 1958. Chemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta 13:153–212 [Google Scholar]
  59. Gonzalez I, Laiz L, Hermosin B, Caballero B, Incerti C, Saiz-Jimenez C. 1999. Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain). J Microbiol. Methods 36:123–27 [Google Scholar]
  60. Graham JW. 1959. Metabolically induced precipitation of trace elements from sea water. Science 129:1428–29 [Google Scholar]
  61. Graham JW, Cooper S. 1959. Biological origin of manganese-rich deposits on the ocean floor. Nature 183:1050–51 [Google Scholar]
  62. Gupta A, Ehrlich HL. 1989. Selective and non-selective bioleaching of manganese from a manganese-containing silver ore. J. Biotechnol. 9:287–304 [Google Scholar]
  63. Hem JD. 1963. Chemical equilibria and rate of manganese oxidation U.S. Geol. Surv. Water Supply Pap. 1667-A
  64. Henrici TA. 1933. Studies of freshwater bacteria. I. A direct microscopic technique. J. Bacteriol. 25:277–86 [Google Scholar]
  65. Horowitz NH. 1945. On the evolution of biochemical syntheses. Proc. Natl. Acad. Sci. USA 31:153–57 [Google Scholar]
  66. Jacob F. 1954. Les Bactéries Lysogènes et la Notion de Provirus Paris, Fr.: Masson Cie
  67. Karavaiko GI, Kuznetsov SI, Colonizik AI. 1972. The Bacterial Leaching of Metals from Ores61–65 Stonehouse, UK: Technicopy Transl. 1977 (From Russian)
  68. LaRock PA. 1969. The bacterial oxidation of manganese in a fresh water lake PhD thesis Rensselaer Polytechn. Inst., Troy N.Y.:242
  69. Leathen WW, Braley SA Sr, McIntyre LD. 1953. The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. II. Ferrous iron oxidizing bacteria. Appl. Microbiol. 1:65–68 [Google Scholar]
  70. Lederberg EM. 1950. Lysogenicity in Escherichia coli strain K-12. Microb. Genet. Bull. 1:5–9 [Google Scholar]
  71. Lederberg J, Tatum EL. 1946. Gene recombination in Escherichia coli. Nature 158:558 [Google Scholar]
  72. Livsey-Goldblatt E, Norman P, Livesey-Goldblatt DR. 1983. Gold recovery from arsenopyrite/pyrite ore by bacterial leaching and cyanidation. Recent Progress in Biohydrometallurgy G Rossi, AE Torma 627–41 Iglesias, Italy: Assoc. Mineraria Sarda [Google Scholar]
  73. Luria SE. 1945. The nature of “nibbled” colonies of bacteria resistant to bacterial viruses. Proc. Indiana Acad. Sci. 54:51 [Google Scholar]
  74. Lwoff A. 1953. Lysogeny. Bacteriol. Rev. 17:269–337 [Google Scholar]
  75. Murray J. 1891. Report on the Scientific Results of the Voyage of H. M. S. Challenger During the Years 1873–76. Deep Sea Deposits London: H.M.S. Stationary Office
  76. Nielsen AM, Beck JV. 1972. Chalcocite oxidation and coupled carbon dioxide fixation by Thiobacillus ferrooxidans. Science 175:1124–26 [Google Scholar]
  77. Osborne FH. 1973. Arsenite oxidation by a soil isolate of Alcaligenes PhD thesis Rensselaer Polytechn. Inst. Troy, N.Y.:112 [Google Scholar]
  78. Osborne FH, Ehrlich HL. 1976. Oxidation of arsenite by a soil isolate of Alcaligenes. J. Appl. Bacteriol. 41:295–305 [Google Scholar]
  79. Philips SE, Taylor ML. 1976. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl. Environ. Microbiol. 32:392–99 [Google Scholar]
  80. Romanenko VI, Koren'kov VN. 1977. A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46:414–17 (In Russian) [Google Scholar]
  81. Saiz-Jimenez C, Cuezva S, Jurado V, Fernandez-Cortes A, Porca E. et al. 2011. Paleolithic art in peril: policy and science collide at Altamira Cave. Science 334:42–43 [Google Scholar]
  82. Silver S, Phung LT. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71:599–608 [Google Scholar]
  83. Silverman MP, Ehrlich HL. 1964. Microbial formation and degradation of minerals. Adv. Appl. Microbiol. 6:153–206 [Google Scholar]
  84. Silverman MP, Lundgren DG. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77:642–47 [Google Scholar]
  85. Stanley WM. 1935. Isolation of a crystalline protein possessing the properties of the tobacco-mosaic virus. Science 81:644–45 [Google Scholar]
  86. Temple KL, Colmer AR. 1951. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J. Bacteriol. 62:605–11 [Google Scholar]
  87. Temple KL, Delchamps EW. 1953. Autotrophic bacteria and the formation of acid in bituminous coal mines. Appl. Microbiol. 1:255–58 [Google Scholar]
  88. Tortoriello RC. 1971. Manganese oxide reduction by microorganisms in fresh water environments PhD thesis Rensselaer Polytechn. Inst. Troy, N.Y.:168
  89. Trimble RB, Ehrlich HL. 1968. Bacteriology of manganese nodules. III. Reduction of MnO2 by two strains of nodule bacteria. Appl. Microbiol. 16:695–702 [Google Scholar]
  90. Trimble RB, Ehrlich HL. 1970. Bacteriology of manganese nodules. IV. Induction of an MnO2-reductase system in a marine bacillus. Appl. Microbiol. 19:966–72 [Google Scholar]
  91. Watson JD, Crick FHC. 1953. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18:123–31 [Google Scholar]
  92. Welch RH. 1977. Effect of conditions and physiological state on arsenite oxidation by Alcaligenes faecalis MS thesis Rensselaer Polytechn. Inst. Troy, N.Y.:75 [Google Scholar]
  93. Yan B, Abrajano T, Newville M, Sutton S, Sturchio NC, Ehrlich H. 2004. Anaerobic bacterial reduction of ferric iron in pisolites. Water-Rock Interaction: 11th Int. Symp. Rock-Water Interaction RB Wanty, RR Seal II 21165–69 Leiden, Netherlands: AA Balkema [Google Scholar]
  94. Yang SH, Ehrlich HL. 1976. Effect of four heavy metals (Mn, Ni, Cu, Co) on some bacteria from the deep sea. Proc. 3rd Int. Biodegrad. Symp. JM Sharpley, AM Kaplan 867–74 London, UK: Appl. Sci. [Google Scholar]
  95. Zamarreño DV, Inkpen R, May E. 2009. Carbonate crystals precipitated by freshwater bacteria and their use as limestone consolidant. Appl. Environ. Microbiol. 75:5981–90 [Google Scholar]
  96. Zimmermann J, Gonzalez JM, Saiz-Jimenez C. 2005. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol. J. 22:379–88 [Google Scholar]
  97. Zinder ND, Lederberg J. 1952. Genetic exchange in Salmonella. J. Bacteriol. 64:679–99 [Google Scholar]
/content/journals/10.1146/annurev-earth-042711-105342
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error