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ABSTRACT

The Nobel Prize in Physics 2021 was awarded to Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi for their “groundbreaking contri-
butions to our understanding of complex systems,” including major advances in the understanding of our climate and climate change. In this
Perspective article, we review their key contributions and discuss their relevance in relation to the present understanding of our climate. We
conclude by outlining some promising research directions and open questions in climate science.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0090222

Classic complex systems, as coupled pendula, nonlinear circuits,
or lasers, are typically constituted by a few elements or subsys-
tems whose dynamical behavior and interactions are nonlinear
and may involve memory effects. Due to these properties, they
are able to generate rich and even chaotic dynamics, i.e., long-
term predictions fail. In contrast, “complicated” systems can be
very large, but their governing equations are linear. Thus, their
system’s behavior can be understood by using a “reductionist”
approach, and it can be well predicted from the behavior of the
individual subsystems. However, many real systems are complex
and they consist of many components, such as power grids or the
human brain. Our Earth’s climate system as a whole is another
outstanding example of such a large complex system. Addition-
ally, it covers a broad range of scales in space and time. Hence,
it cannot be appropriately described and understood by using

the reductionist approach but requires advanced techniques from
complex systems science. Here, we discuss how the pioneering
works of Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi
(Physics Nobel Prize 2021) have given us crucial insights for
understanding Earth’s climate and basic underlying mechanisms
of climate change and what are recent directions in this very active
field of research.

I. INTRODUCTION

The Earth’s system is a highly complex system whose com-
ponents (e.g., atmosphere, land, cryosphere) and interactions,
schematically represented in Fig. 1, are driven by various physical,
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biological, and chemical processes which act with different spatial
and temporal scales.

To be able to predict Earth’s weather (in the next few days)
and climate (in the next few months and longer), the interna-
tional community has dedicated a great number of resources to
develop advanced Earth system models (e.g., Refs. 1 and 2). These
models numerically simulate Earth’s climate by incorporating, in
detail, all the known processes that take place from the depth of
the oceans to the highest levels of Earth’s atmosphere. The impres-
sive knowledge of the Earth’s representation and the understand-
ing of climate change have been reached after a long history of
model development, with milestones that substantially improved
our understanding.

Already by the end of the 19th century, Svante Arrhenius
(Chemistry Nobel Prize 1903) understood the role of greenhouse
gases in the atmosphere in maintaining Earth’s temperature at the
observed value by absorbing the long-wave radiation emitted from
Earth’s surface.3 He was the first to quantitatively associate rising
temperatures with the increase of greenhouse gases.

One of the first to conceive the notion that the laws of physics
could be used for weather prediction was the Norwegian meteorol-
ogist Vilhelm Bjerknes, who considered weather forecasting as an
initial value problem of mathematical physics.4 Inspired by Bjerknes,
in the 1920s, Lewis Fry Richardson confronted the impossible calcu-
lus of differential equations by replacing them with more tractable
“finite difference” equations.5 His method of computation, although
tedious at that time, laid the foundations of present-day numerical
weather prediction models with the advent of electronic computers.
In 1950, John von Neumann was working together with Jule Gregory
Charney and produced the first numerical weather forecast6 using
the first programmable computer, the ENIAC.

In 1963, Edward Lorenz7 discovered deterministic chaos in a
model he developed for studying convective process in the atmo-
sphere. His equations were a strongly simplified version of the ones
derived by Barry Saltzman8 to study the Rayleigh–Bénard convec-
tion. His findings created a new paradigm in science by imposing a
limit on the predictability of the weather, as extremely small errors
in the initial state amplify rapidly and lead to large uncertainties
in the forecasts when they are longer than about ten days. In the
following decades, unprecedented advances in computing power
and observations from different sources (satellites, radar systems,
buoys, etc.) and the subtle use of nonlinear data assimilation as well
as new numerical techniques have enabled the scientific commu-
nity to build highly sophisticated weather models called the general
circulation models (GCMs).9,10

Humans have strongly influenced our Earth’s system due to
their various activities. Although in 1861, Tyndall11 had already
identified CO2 as a greenhouse gas, it was only in the late 20th
century that human influence on climate variability was quanti-
tatively measured. The weight of evidence on detectable anthro-
pogenic influence on the course of climate has accumulated rapidly
over the past few decades. The very recent assessment report of
the Intergovernmental Panel on Climate Change (IPCC AR6), enti-
tled “Climate Change 2021: The Physical Science Basis,”12 compiles
the recent studies about climate change and provides overwhelm-
ing evidence of the increase of the Earth’s surface temperature
due to anthropogenic interventions and the subsequent alterations

that are expected in the occurrence of extreme weather across the
globe.

In 2021, the Physics Nobel Prize recognized the importance of
understanding variability, which leads to various emergent phenom-
ena in different complex systems, such as the Earth’s climate. Half of
the Nobel Prize was awarded to Syukuro Manabe and Klaus Has-
selmann for their contributions to the understanding and modeling
of the Earth’s climate. The other half was awarded to Giorgio Parisi
for his contributions to the theory of complex systems, which have
applications not only in different areas of physics, including climate
science, but also in mathematics, neuroscience, machine learning,
and various other disciplines.

Syukuro Manabe believed that equal emphasis should be placed
on both understanding as well as predicting climate change and tried
to find a relation between the increase in global temperature with
that of the level of CO2 in the atmosphere.13 Hasselmann demon-
strated how climate variability can be driven by stochastic short time
scale weather fluctuations.14,15 He also proposed a systematic frame-
work to compare climate models and observations, to distinguish, in
climate signals, the imprints of natural variability from those caused
by the human-induced increase of greenhouse gases.16,17

In Secs. II–V, we first summarize some main contributions of
the three Nobel awardees to climate science and how they built upon
previous findings. Then, we discuss how their works are still advanc-
ing our knowledge of the Earth’s system, and finally, we conclude
with some open questions regarding the future climate of our planet,
promising directions as well as the role the scientific community
should take to shape its future.

II. MANABE AND HASSELMANN’S CONTRIBUTIONS TO

CLIMATE MODELING

The importance of the atmosphere, in particular, the green-
house gases, in making our planet habitable by maintaining a livable
temperature is well known today.

From the very first zero-dimensional model introduced by
Arrhenius, to the currently used state-of-the-art GCMs, there is
a long history of contributions that can be seen from the per-
spective of model hierarchies.18 The initial developments made use
of conceptual energy-balance models. Such models improved the
understanding of the complexity of the Earth’s system, and this
increased understanding motivated further improvement of mod-
eling the Earth’s climate, with the addition of more processes and
spatiotemporal scales and interactions. In this context, the works
of Syukuro Manabe and Klaus Hasselmann are of fundamental
importance.

A. Manabe’s 1D radiative-convective model

Syukuro Manabe realized that the heating of the Earth’s surface
would warm the air in close contact with the Earth’s surface, gen-
erating convection. As convection proceeds, warm air (water vapor)
rises and adiabatically cools, leading to condensation of water vapor
and release of its latent heat. Taking this convective adjustment into
consideration, in 1967, Manabe and Wetherald13 modeled the atmo-
sphere as a one-dimensional vertical column with an initial profile
of relative humidity and greenhouse gases. This profile evolved with
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FIG. 1. Schematic representation of the interaction between the different components of the Earth’s system from the Community Climate System Model (CCSM), developed
by the University Corporation for Atmospheric Research (UCAR).1 Copyright 2022 UCAR. Illustration by Paul Grabhorn.

time according to the dynamics of radiative transfer and upward
convection of water vapor (Fig. 2). They found that although a
change in oxygen and nitrogen levels has a negligible impact on tem-
perature, doubling the CO2 concentration leads to an increase in the
global surface temperature by 2.36 ◦C, while the temperature in the
stratosphere substantially decreases (Fig. 3). This difference between
the response of the troposphere and that of the stratosphere is due
to the absence of convective heating in the latter. The net cooling
due to the emission and absorption of long-wave radiation, mainly
by CO2, and the heating due to the absorption of solar radiation by
ozone are the two major processes that maintain the heat balance in
the stratosphere. An increase in the CO2 concentration in the atmo-
sphere would enhance the net long-wave cooling, thereby lowering
the equilibrium temperature of the stratosphere.19

It is interesting to note that in 1938, a British engineer,
Guy Callendar,20 discovered the potential impact of anthropogenic

CO2 emission into the atmosphere on the global climate through
a simple radiative energy-balance model of the Earth’s surface.
Although Fritz Möller, one of Manabe’s collaborators, noted
serious flaws in Callendar’s approach, Manabe realized that his
radiative-convective model was an excellent conceptual tool to
study the greenhouse effect. Manabe’s findings confirmed that the
differential heating and cooling of the lower and upper atmo-
sphere, respectively, is caused due to increased levels of the
greenhouse gases. If the heating was caused by the increase
in solar radiation, the entire atmosphere should have warmed
up.

Manabe’s work was a milestone in the understanding of the
complex interactions in the Earth’s system and the effect of CO2.
Not only was it was the first published paper to use a com-
putational model and calculate the global warming and strato-
spheric cooling from increased CO2, but it was also the first
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FIG. 2. Schematic representation of Syukuro Manabe’s climate model, which was the first to incorporate the interaction between radiation balance and the vertical transport
of air mass due to convection, in addition to the heat contributed by the water cycle. Labels (1), (2), and (3) represent the following processes: (1) Infrared heat radiation
from the ground is partially absorbed in the atmosphere, warming the air and the ground. Some radiates out into space. (2) Hot air being lighter than cold air rises through
convection, carrying water vapor, a powerful greenhouse gas, along with it. The concentration of water vapor increases as the air becomes warmer. (3) Higher up, where the
atmosphere is colder, cloud drops form and release the latent heat stored in the water vapor.

to assess the magnitude of water vapor feedback. At the same
time, this work introduced two important ideas. First, it con-
sidered the heat balance of the atmosphere as a whole, rather
than the heat balance of the Earth’s surface,21 which was a cru-
cial advancement, as it links the different atmospheric levels with
the Earth’s surface, thereby accounting for their interactions while
computing the changes in their temperatures. Second, it assumed
that the changes in the atmospheric temperature will not affect
the relative humidity instead of the absolute humidity as used
in the previous work.22 Thereafter, this assumption was used to
model the positive temperature–water vapor feedback. The work
comprehensively demonstrated that the combination of radiation
and convection (radiative-convective scheme), the use of rela-
tive humidity, and the incorporation of water vapor feedback
could substantially improve the representation of the system, thus
supporting more realistic GCMs. It is fascinating that Manabe’s
rather simple conceptual 1-D model was able to quantify climate
sensitivity more accurately than the more complex GCMs that
were used at that time. In fact, the CO2-related findings of this
work are in very close agreement with the current state-of-the-art
climate models despite many simplifications of that study.

Simplifications were nevertheless necessary given the available com-
putational resources.

B. Manabe’s 3D general circulation model

Proceeding one step further, Manabe incorporated the effects
of hydrology at Earth’s surface in a three-dimensional (3D) GCM
with nine vertical layers resolving the atmosphere from the surface
boundary layer until the stratosphere.23 He concluded, “the interac-
tion between the hydrology of the Earth’s surface and the general
circulation of the model atmosphere results in a highly realistic dis-
tribution of precipitation, evaporation, and sensible heat flux and
net radiative flux at the Earth’s surface.” He then continued improv-
ing the models by increasing their resolution and the number of
equations. In 1975, Manabe and Wetherald24 simulated for the first
time the 3D response of the hydrological cycle and temperature to
increased CO2 concentrations in the Earth’s atmosphere and found
that the doubling of CO2 significantly intensifies the hydrologi-
cal cycle of the model. All these developments finally led to the
incorporation of the ocean–atmosphere interaction to the GCMs.25
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FIG. 3. Vertical profiles of temperature in radiative-convective equilibrium are
shown for three different atmospheric concentrations of carbon dioxide, that is,
150, 300, and 600 ppm by volume as dashed, dotted, and solid lines, respectively.
From Manabe and Wetherald, Atmos. Sci. 24, 241–259 (1967). Copyright 1967
American Meteorological Society.13

C. Hasselmann’s model of climate variability

Before Klaus Hasselmann introduced in 1976 his stochastic
model14 for predicting climatic variability, it was well known that
the climate system, described by its state vector z = (z1, z2, . . .) that
represents climatic variables—density, wind velocity, temperature,
etc.—at a given time at spatial grid points at different levels, could be
divided into two subsystems: (1) the rapidly varying “weather” sys-
tem x and (2) the slowly-varying “climate” response y, having their
own characteristic time scales τx and τy, respectively. Then, evolu-
tion of the complete climate system could be described by a set of
equations,

dxi

dt
= ui(x, y), (1)

dyi

dt
= vi(x, y), (2)

where ui and vi are nonlinear functions of the weather and climate
variables. In general, the climate variables yi may be associated with
sea surface temperature, ice coverage or land foliage, among others.
Since the weather fluctuates on a daily basis and climate varies over
time scales of months to several years or longer, τx � τy and y could
be set as constant in weather models.

Although the GCMs could be used to predict the weather
components, xi, they could not be simulated for long enough time
scales of climatic relevance due to the limitation on computational
resources. As an alternative, statistical dynamical models (SDMs)
had been used to study climatic variability.26,27 However, since these
models averaged out the small-time-scale weather fluctuations, they
turned out to be deterministic rather than stochastic and often
displayed the same asymptotic behavior for a range of initial con-
ditions. As a result, SDMs were not able to capture the red-noise
variance spectra of the observed climate data. In order to explain
climatic variability in the context of SDMs, researchers incorpo-
rated external perturbations (such as changes in the solar radiation
and turbidity of the atmosphere), while neglected the importance of
weather fluctuations.

In his stochastic model, Hasselmann highlighted the important
role of weather fluctuations in determining the climate variability.
He assumed that over time scales t � τy, the change in a climate

variable yi from its initial state can be divided into a mean
〈

yi

〉

and a
fluctuating part, y′

i. Similarly, the forcing function vi can be written
as 〈vi〉 + v′

i, where the rapidly changing weather components mani-
fest as the fluctuations v′

i, which act as random forcing terms in the
model; i.e.,

dy′
i

dt
= v′

i. (3)

In a seminal work in 1921, Taylor28 showed that Eq. (3) is the con-
tinuum mechanical analog of normal molecular diffusion or the
Brownian motion. From Eq. (3), it follows that the covariance,

〈

y′
iy

′
i

〉

,
grows linearly with time over climatic time scales; i.e.,

〈

y′
iy

′
j

〉

= 2Dijt, (4)

where

Dij =
1

2

∫ ∞

−∞

Pij(τ ) dτ (5)

is the diffusion coefficient and Pij =
〈

v′
i(t + τ)v′

j(t)
〉

denotes the

covariance function of the forcing. In terms of the spectral repre-
sentation of Eq. (4), the diffusion coefficient can then be simply
expressed in terms of spectral density of the Pij, Fij(ω) at zero fre-
quency considering only the first term of the Taylor expansion of
the spectrum,

Dij = πFij(0). (6)

It follows that for sufficiently small frequencies τ−1
y < ω < τ−1

x ,

Fij(ω) approaches Fij(0), and for Fij(0) 6= 0, the spectrum of input
vi is white.

Hasselmann thus argued that the climate system is analogous
to the Brownian motion problem—exhibiting the same random-
walk response characteristics as large particles interacting with an
ensemble of much smaller particles. As a result, it is possible to write
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FIG. 4. Spectrum of the sea surface temperature (SST) anomaly at Atlantic
Ocean Weather Ship India for the period 1949–1964. The arrows indicate a
95% confidence interval. The smooth curve was calculated from Hasselmann’s
stochastic model of SST variability, which successfully explains the ubiquitous
red-noise behavior of the SST signal. From Frankignoul and Hasselmann, Tellus
29, 289–305 (1977). Copyright 1977 Author(s), Published by Taylor and Francis
Group LLC licensed under a Creative Commons Attribution (CC BY) License.15

a Fokker–Planck equation for the climate probability distribution
p(y, t), in which the diffusion term Dij is governed by the fluctuat-
ing weather components and the direct internal coupling is included
through the propagation term v̂i,

∂p

∂t
+

∂

∂yi

(v̂ip) −
∂

∂yi

(

Dij

∂p

∂yj

)

= 0, (7)

where

v̂i = 〈vi〉 −
∂

∂yj

Dij = 〈vi〉 −π
∂

∂yj

Fij(0). (8)

Therefore, the model includes indirect feedback through the depen-
dence of the diffusion coefficients on the climatic state. This stabi-
lizing feedback mechanism is vital for formulating a realistic model
without which climatic fluctuations will grow unboundedly. The
presence of the diffusion term leads to a spread in the probabil-
ity distribution of the climate state p at a later time even for a
well-defined initial state, thus implying that the climate evolution
is rather a stochastic process than a deterministic one. However, the
internal feedback terms imply that the climate system does have a
finite degree of predictability despite its stochasticity.

Hasselmann’s stochastic model was successful in explaining
the ubiquitous red-noise behavior observed in the long-term sea
surface temperature (SST) anomaly data (Fig. 4) without incorpo-
rating external perturbations.15 In this case, the evolution of the SST
anomaly y(t) is governed by Eq. (2), where the forcing function
v(x, y) is determined by the random fluxes of heat and momentum
across the air–sea interface. Thus, the red-noise spectrum of the SST
anomaly can be interpreted naturally as the response of the oceanic
surface layers to short-time-scale atmospheric forcing, which acts as
a white-noise generator.

D. Hasselmann and Manabe’s contributions to the

development of coupled general circulation models

Hasselmann realized the importance of coupling the global
ocean and atmospheric GCMs together, along with other climate
sub-systems, which interact with them, in order to build a more
realistic climate model that can be used for more accurate fore-
casting. The ocean-GCMs were strongly sensitive to minor changes
in the surface forcing. Such fluctuations could potentially lead to
large climate variability down the line, as implied by the stochas-
tic model. Hence, it was essential to model the dynamical processes
at the air–sea interface as accurately as possible in the global coupled
ocean–atmospheric GCMs (CGCMs) that were under development.

In 1988, the WAMDI group, comprising Hasselmann and oth-
ers, constructed a third-generation surface wave model, wherein
the evolution of the wave spectrum was inferred from the basic
equations governing the spectral energy balance rather than ad
hoc assumptions about its shape.29 Its output agreed well with
observational data from various sources under different situations.

Since the oceans act as carbon sinks, changes in the
ocean circulation can significantly affect the CO2 concentra-
tion in the atmosphere, as demonstrated by the 3D carbon-
cycle model of Heinze et al.,30 based on a 3D ocean transport
model.31 Thus, the climate dynamics are described by a coupled
ocean–atmosphere–surface–wave–carbon-cycle model.

Such a model was developed in 1980 when Manabe and
Stouffer25 coupled a GCM of the atmosphere with a heat and water
balance model of the continents and a mixed layer model of the
oceans. Manabe and Stouffer25 studied the model’s response to the
quadrupling of the CO2 concentration in the atmosphere. Their
model succeeded in reproducing the large-scale characteristics of
seasonal and geographical variation of the observed atmospheric
temperature.

In 1992, Cubasch et al.32 simulated the climate changes caused
by anthropogenic emission of greenhouse gases during the next 100
years for IPCC Scenarios A (“business as usual”) and D (“accelerated
policies”) using one of the Hamburg CGCMs. The model simu-
lated the response of the oceans to stochastic forcing by coupling the
numerical weather forecast model of the atmosphere with the ocean
model appropriate for describing large-scale geostrophic circulation
via the air–sea fluxes of momentum, sensible and latent heat, short
and long-wave radiation, and fresh water. Three time-dependent
greenhouse warming simulations (IPCC Scenarios A and D and a
CO2 doubling experiment) were carried out with the CGCM, along
with a control run to distinguish anthropogenic warming from the
natural variability of the model. In their model, the near-surface
temperature increased by 2.6 K in Scenario A and by 0.6 K in Sce-
nario D in 100 years. However, during the first 10–50 years, their
estimates were lower than the corresponding IPCC estimates, which
were computed from the relatively simpler box-diffusion-upwelling

model (see Fig. 10 in Cubasch et al.32). This warming delay could
be explained by the “cold start” to the model (lack of a warm-up
period before the start of simulations). It could also be due to a
stronger heat uptake by the oceans, as observed in the deep oceans
in higher latitudes. This might have resulted from a detailed descrip-
tion of the deep ocean in the model. At the later stages of all three
warming simulations, it is possible to easily distinguish the global
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patterns of climate change in the former from the observed nat-
ural variability of the control run. In the CO2-doubling run, one
is clearly able to distinguish between two time scales—an initial
rapid increase over an ≈ 5-year period followed by a more grad-
ual increase over the remaining duration. This is consistent with the
circulation time scales of the upper and abyssal ocean layers, respec-
tively. The sea-level rise predicted from this model is also smaller
than the corresponding IPCC estimates. This is suggestive of a delay
in the sea-level response to thermal expansion and is consistent
with previous estimates. Later, Joos et al.33 investigated global warm-
ing feedback on terrestrial carbon uptake under the IPCC emission
scenarios by coupling a dynamic global vegetation model with the
CGCMs, formulating a coupled physical–biogeochemical climate
model.

III. PARISI’S CONTRIBUTIONS TO UNDERSTANDING

NOISE-INDUCED EFFECTS IN OUR CLIMATE

The analysis of paleoclimatic records over the last million years
has shown the occurrence of major climate changes with an appar-
ent periodicity of 105 years and temperature variations34 of the order
of 10 K. The transitions occur as an alternation between two stable
climatic equilibrium states, which are often interpreted as glacial and
interglacial climate.35 The two state equilibria of the climate system
can be modeled by studying the effect of changes in the annually
averaged solar radiation on the global Earth temperature T using a
zero-dimensional Budyko–Sellers model,26,27,36

C
dT

dt
= Rin(T) − Rout(T) =⇒

dT

dt
= F(T). (9)

This belongs to the class of deterministic energy-balance models,
which are the simplest possible models of the climate system. Here,
C is the thermal capacity of the Earth, Rin is the incoming solar
radiation, and F(T) = (Rin − Rout)/C. Based on our present knowl-
edge of the ice albedo feedback as a function of the temperature,
the outgoing solar radiation Rout can be parameterized as the sum
of the reflected part α(T)Rin, where α(T) is the globally averaged
albedo, and the emitted infrared radiation ε(T). The fixed points of
Eq. (9) represent the steady states or the “climates” of the model.
The effective potential V(T) = −

∫

F(T)dT of the system in Eq. (9)
is postulated to be bistable,37–39 i.e., having one unstable (T2) and two
stable steady states (T1 and T3) based on the two “observed climates”
from the paleoclimatic records.

In 1930, Serbian scientist Milutin Milankovitch40 related these
transitions to changes in global solar radiation caused by periodical
changes in the Earth’s orbital parameters, thereby associating cli-
mate change with external astronomical forcing. The effect on the
solar radiation due to the periodic variation of Earth’s orbit eccen-
tricity can be incorporated in Eq. (9) by parameterizing the incom-
ing solar radiation as Rin = Q(1 + A cos ωt), where Q is the solar
constant, A = 5 × 10−4 is the amplitude of the Milankovitch forc-
ing, and ω = 2π/105 yr−1 is the angular frequency of this periodic
variation. However, it was found through actual calculations41 that
at most 1 K variation in temperature is caused by the Milankovitch
forcing, which is much less than what is observed from climate
records [see Fig. 5(a)]. Using Hasselmann’s concept14 of mod-
eling short-time scale phenomena as stochastic perturbations, in

1981, Sutera43 quantitatively showed that finite amplitude stochas-
tic disturbances in an energy-balance model could lead to transi-
tions between the equilibria of the model. However, the transitions
between climate states occur randomly and not periodically, with a
characteristic time of 105 years [see Fig. 5(b) for a schematic illustra-
tion]. In 1982, Benzi et al.44,45 hinted that the problem may be solved
by incorporating the effects of internal noise arising due to atmo-
spheric and oceanic circulations along with the periodic changes
in the solar radiation due to Milankovitch forcing into the climate
model [Fig. 5(c)]. The reason being that the combined effects of
internal noise and external periodic forcing can result in almost
periodic behavior. Equation (9) can then be modified as

dT = F(T) dt + σ dW, (10)

where σ 2 is the variance of the stochastic perturbation and dW
are the infinitesimal increments of a Wiener process, which is the
mathematical analog of the standard Brownian motion. By both
numerically simulating the above climate model44 and using the
expression derived by Kramers46 for the mean time of transition45

between the two stable states of a double-well potential, Benzi, Parisi,
and collaborators were able to reproduce the nearly periodic tran-
sitions between two climate states, differing in the global mean
temperature by 10 K (i.e., T3 − T1 ≈ 10 K), occurring at intervals of
105 years (Fig. 6). The response of the model appeared to be con-
siderably enhanced when the characteristic time of the small-scale

FIG. 5. Schematic diagram of the response of global mean temperature to the
effect of (a) external periodic forcing (Milankovitch forcing) with angular frequency
ω in the absence of noise, (b) internal noise (arising due to atmospheric and
oceanic circulations) in the absence of external periodic forcing, and (c) a combi-
nation of both. The temperatures T1 and T3 correspond to the stable steady states
of the system, while T2 represents the unstable one. It is only in case (c) that we
observe noise-induced periodic transitions between the two stable climatic states
with the angular frequency ω. The figure was obtained from simulations of the
stochastic dynamical system proposed in 1981 by Benzi et al.,42 which exhibits
stochastic resonance.
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FIG. 6. Simulated temperature response of the stochastically perturbed climate
model, including the effects due to Milankovitch forcing. Periodic transitions were
seen every 105 years between two stable climate regimes differing by 10 K in their
mean temperatures. From Benzi et al., Tellus 34, 10–15 (1982). Copyright 1982
Author(s), Published by Taylor and Francis Group LLC licensed under a Creative
Commons Attribution (CC BY) License.44

fluctuations matched closely with the period of the external force,
similar to what happens during a typical resonance (when the fre-
quency of the external force matches with the natural frequency of
oscillations) and they called it “stochastic resonance.”42,44,45 Similar
results were obtained by Nicolis,47 both analytically and numeri-
cally, from the Fokker–Planck equation derived from the stochastic
climate model.

Such abrupt transitions between coexisting states or attrac-
tors have been referred to as tipping points.48,49 It is fascinating
that Earth’s climate can exhibit abrupt noise-induced tipping from
one climate regime to another under the influence of stochastic
fluctuations due to internal mechanisms.

IV. CLIMATE CHANGE DUE TO ANTHROPOGENIC

FACTORS

As seen in Sec. III, the combined effects of the internal vari-
ability of the Earth’s climate and an external astronomical peri-
odic forcing may be responsible for nearly regular tipping between
glacial and inter-glacial climate states. However, since the climate
is governed by a myriad of intricate interactions within the cou-
pled ocean–atmosphere–cryosphere–land system, perturbations to
any of these due to anthropogenic factors (such as the increase in
greenhouse gas concentration due to the burning of fossil fuels)
could amplify with time and the Earth system could cross a tipping
point, which could cause large-scale impacts on human and eco-
logical systems.48 Both Manabe and Hasselmann made important
contributions to the study of the consequences of a changing climate
on the tipping elements (e.g., the Arctic sea ice, Atlantic thermoha-
line circulation, boreal forest, etc.), and to identify the role of human
activities on them.

A. Consequences of enhanced concentrations of

greenhouse gases in the atmosphere

Manabe and Stouffer,25 in 1980, were able to show through their
coupled ocean–atmosphere model that around the Arctic Ocean the
warming of the atmosphere surface layer due to increased CO2 con-
centrations would be much larger in the winter than in the summer
(Fig. 7). This finding was attributed to the reduction of sea ice thick-
ness. This reduction subsequently reduces the albedo, which then
leads to a substantial increase of the net incoming radiation in sum-
mer. However, this surplus of energy does not bring a remarkable
increase of the average summer temperature because it is absorbed
by the oceans or used for melting the sea ice. Thus, during the com-
ing winter season, the sea ice is delayed and/or reduced in thickness,
subsequently reducing its thermal insulation effect. As during win-
ter, the air-sea temperature differences become large, and this finally
leads to increased warming of the surface atmospheric layer. The
winter warming is enhanced further by the stable stratification of
the model atmosphere in the winter, which confines warming to the
surface layers.

Later, in 1989, Manabe and his colleagues demonstrated an
interhemispheric asymmetry in temperature changes under an
increase of CO2 and described how it is affected by oceanic

FIG. 7. Temporal variation in the distribution of sea ice thickness (in centimeters)
across different latitudes for 1 × CO2 (top) and 4 × CO2 (bottom) experiments.
Regions where sea ice thickness exceeds 0.1 m are shaded. From Manabe
and Stouffer, J. Geophys. Res. 85, 5529–5554 (1980). Copyright 1980 American
Geophysical Union.25
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FIG. 8. Temporal variation of the intensity of the thermohaline circulation in the
North Atlantic from the standard integration (S) in which the level of CO2 is
unchanged, on doubling the concentration of atmospheric CO2 (2XC), and then
quadrupling the concentration of atmospheric CO2 (4XC). Here, the intensity is
defined as the maximum value of the stream function representing the merid-
ional circulation in the North Atlantic. From Manabe and Stouffer, J. Clim. 7, 5–23
(1994). Copyright 1994 American Meteorological Society.52

processes:50 the warming of surface air was predicted to be faster
in the Northern Hemisphere than in the Southern Hemisphere. At
the same time, the warming over the northern North Atlantic was
predicted to be relatively slow because of the weakening of the large-
scale ocean circulation (thermohaline circulation), which acts as a
countereffect. In fact, a few years later, Manabe and Stouffer showed
the non-linear effects of increasing CO2 concentrations (unchanged
vs doubling vs quadrupling) to the thermohaline circulation
(Fig. 8).51,52 The thermal and dynamical structure of the oceans
changes markedly in the quadrupled-CO2 climate: the ocean settles
into a new stable state in which the thermohaline circulation has
ceased entirely and the thermohaline deepens substantially. These
changes prevent the ventilation of the deep ocean and could have
a profound impact on the carbon cycle and biogeochemistry of the
coupled system.

In 2001, Hasselmann and co-workers used a coupled physi-
cal–biogeochemical model to investigate the climate-land biosphere
feedbacks under a range of projected greenhouse gases emission
scenarios33 and demonstrated that the terrestrial system can generate
a substantial response to climatic shifts within a few decades. Their
model suggests that an enhanced warming could lead to a large-scale
dieback of the boreal forests, with a continuous transition to tem-
perate deciduous forests or open grasslands without abrupt tipping
point behavior. On the other hand, the warming in high northern
latitudes leads to a gradual transition from tundra to boreal forests
in North America and Siberia.

Hasselmann and co-workers53 also developed a nonlinear
impulse response function of the coupled carbon cycle-climate sys-
tem and computed the temporal evolution of the spatial patterns in
selected impact-relevant climate fields under long-term CO2 emis-
sion scenarios. They predicted that if all the estimated fossil fuel
resources are burnt, the climate system will be carried into a range
of extreme CO2 concentrations, leading to increase in tempera-
tures and a rise in sea levels, whose magnitudes are far beyond the
calibration ranges of existing climate models. Even freezing of emis-
sion levels would limit global warming in the long run. Two years

later, Hasselmann and collaborators54 used an integrated assessment
model consisting of the nonlinear impulse response climate model
coupled with an elementary economic model55 and showed that,
owing to the long-term memory of the climate system, major cli-
mate change could be avoided only by reducing global emissions to
a small fraction of present levels within one or two centuries.

B. Hasselmann’s contribution to the identification of

the climate change signal in observed data

Although there was growing qualitative and circumstantial evi-
dence of global warming due to increasing atmospheric greenhouse
gas concentrations predicted by the then state-of-the-art CGCMs,
there was a lack of a quantitative measure to distinguish the climate
change signal from background noise of natural climate variability
in observed climate data.

In 1979, Hasselmann identified the problem as a pattern-
detection problem.56 He demonstrated that the unfiltered atmo-
spheric response to an external forcing mechanism, inferred from
observational or model data, would fail any significance test for
pattern-detection. Hence, he proposed a way of constructing a set
of anticipated response patterns or “guess patterns,” which could be
used as a basis for re-constructing the observed response pattern,
so as to increase the signal-to-noise ratio. Later, he derived an opti-
mal linear filter or “fingerprint,” in order to detect a time-dependent
multivariate climate change signal in the presence of natural climate
variability.16

Through the method of optimal fingerprinting, Hasselmann
and his colleagues first established that climate change has occurred
over the last 30 years, the cause of which cannot be singly ascribed
to natural climate variability.57 In subsequent works, they addition-
ally demonstrated that the detected climate change signal can be
most likely attributed to an increase in greenhouse gas concentra-
tions, rather than some other external forcing mechanisms, such as
changes in the solar constant, volcanic activity, or modified land-use
practices17,58 (Fig. 9).

V. A COMPLEX FUTURE

The recognition of the contributions of Syukuro Manabe, Klaus
Hasselmann, and Giorgio Parisi to climate science and complex sys-
tems by the Nobel committee comes at a critical juncture when the
world is on the verge of a climate crisis. The pioneering works of the
Physics Nobel Laureates of 2021 provide a deep insight into the past,
present, and future of our climate and the associated role of human
activities.

Syukuro Manabe and Klaus Hasselmann established the foun-
dation on which models for weather prediction stand today. The
very recent “Destination Earth” initiative,59 which aims to digitally
replicate the state and temporal evolution of the Earth system with
available observations and the laws of physics, in order to monitor
and predict extreme weather events and climate change, is based on
such models.

Additionally, stochastic parameterization60 of weather models,
i.e., parameterization that adapts automatically to different spatial
scales, is an active direction of research for seamless predictions of
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FIG. 9. Global average warming from observational data (black) and from an
ensemble of climate model simulations that include only natural forcing (blue) and
both human and natural forcing (orange). Individual model simulations are shown
by thin lines, while thick lines indicate their average. The effects of strong volcanic
eruptions are marked by vertical bars. Reproduced with permission from Hegerl
et al., Environ. Res. Lett. 6, 044025 (2011). Copyright 2011 IOP Publishing.58

weather and climate in the foreseeable future. Many such stochas-
tic parameterizations are based on Hasselmann’s14 ingenious idea of
separating physical processes by time scales. As there is often a direct
relationship between spatial and temporal scales of variability in
geophysical systems, such temporal scale separations can then help
in decomposing small-scale features from large-scale phenomena.

The large natural variability of the climate system on differ-
ent time scales is highly susceptible to relatively small changes in
the natural or anthropogenic forcing. Despite the advancements in
numerical weather and climate prediction models, the multiscale
nature of the climate system implies that many important physical
processes have not yet been resolved. Importantly, more research is
needed to improve our understanding of the interactions between
different tipping elements. Recent developments in dynamical sys-
tems theory and non-equilibrium statistical physics, in addition to
innovative data analysis methods, offer promising approaches.61–64

In particular, the complex network approach65,66 assumes that
climate phenomena can be understood, at least in part, using net-
works or graphs, where the nodes represent geographical regions
and the links represent causal interactions between phenomena
occurring in different regions. The representation of the Earth sys-
tem in terms of interacting networks, or networks-of-networks,
sheds light on how changes in one network that represents a
sub-system of the Earth system affect other sub-systems. Climate

network studies can also contribute to project future changes, to
provide uncertainty estimates, and to identify warning signals of the
closeness to tipping points.67 The network approach is particularly
attractive due to its inherent nonlinear and data-integrative nature
and can arguably complement numerical modeling methods.68

These new advances may shed light on the presence of critical
tipping points, how close we are to them, and how crossing them will
affect the future of the Earth system, for example, the changing of the
Amazon forest into savanna69,70 or the slowing of the thermohaline
circulation in the Atlantic oceans.71,72 Moreover, these new mod-
els will allow better simulation of the effects of possible mitigation
actions that can be implemented, as, for example, geoengineering for
capturing CO2. There is also a growing need to not only assess the
economic impact of climate change but also to find solutions for the
economy that can help to transfer economic losses associated with
climate change into opportunities for creating a climate-friendly
sustainable economy. This will aid political decisions by providing a
better estimation of the uncertainties involved. Including nonlinear-
ities and stochasticities in coupled climate-economy models,73,74 and
using financial macro-networks75 to comprehensively evaluate the
economic impact of climate policies are promising lines of research
in this direction.

Global challenges demand global solutions. Only together we
can build a better and more sustainable planet for its present and
future inhabitants. This year’s Nobel Prize is a great reminder that
advancing our knowledge about our planet requires large-scale con-
certed efforts—improved research across various disciplines of the
scientific community to provide a scientific basis for decision mak-
ing and joint actions by governments, companies, and citizens—for
mitigating our negative impacts on our planet.54
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