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Abstract

This paper studies the mean-square consensus for heterogeneous multi-agent systems with
probabilistic time delay. Each agent in the system has an objective function and only knows
its own objective function. Control protocols for the system both over the fixed and the
switched weighted-balanced topologies are designed. The consensus state of agents’ posi-
tion can make the sum of objective functions minimum. By adopting probability statistics,
stochastic process, matrix theory and some stability method, sufficient conditions for the
consensus protocol are given. Several simulations are presented to illustrate the potential
correctness of the results.

1 INTRODUCTION

Consensus of multi-agent systems (MAS) has attracted more
and more attention because of its wide application [1–15]. Due
to the complexity of environment, there are many occasions
that require various kinds of agents cooperating with each other
to complete tasks that cannot be done by a single agent. When
different kinds of agents complete a task together, because
of the influence of external environment, communication
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conditions and the different properties of agents themselves,
the dynamics of agents may be different in a system. In other
words, practically, agents in the same system usually have
different dynamics. Some agents only need to consider their
position. However, for some others, it needs to consider not
only the position but also the velocity, even the acceleration,
which leads to the heterogeneous multi-agent systems (HMAS)
[15–24]. Hence it is important to study the consensus problem
of HMAS, which mainly refers to systems consisting of both
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first-order and second-order agents. By using the impulsive
control method and designing the distributed hybrid active
controller, Wang et al. [15] investigated the output formation-
containment problem of interacted linear HMAS. Guo et al.
[17] studied the mean-square consensus of continuous HMAS
with communication noises. Jiang et al. [21] investigated the
couple-group consensus for a class of discrete-time HMAS with
communication and input time delays. Sun et al. [24] studied
the finite-time consensus of HMAS. In practice, the commu-
nication network of systems is not always being fixed. Instead,
it usually switches among different topologies [11, 13, 16, 22],
[25–27]. In addition, time delay and many other uncertain fac-
tors are inevitably and usually occurs randomly [7, 12, 14, 21],
which may affect the convergence of a system, even destroy the
stability of a relatively stable system, so it is important to analyze
the consensus problem of system in statistic or probability sense
[17–19, 22]. Li and Zhang [18] studied the mean-square average
consensus of continuous MAS with white noises. Tan et al. [19]
investigated the mean-square consensus of leader-following
stochastic MAS by the distributed event-triggered control
technique. Mo et al. [22] studied the velocity-constrained
mean-square consensus of HMAS over Markovian switching
topologies and time delay. In order to save the control cost or
reduce the energy consumption, the optimization problem for
MAS becomes more and more important [28–37]. Some of the
optimal consensus results are on first-order systems [29–31],
some on second-order systems [32, 33], and some others are on
higher-order and heterogeneous systems [34–36]. Optimal con-
sensus of MAS with cost functions or objective functions was
studied in [28, 32] and [34]. Sun et al. [28] studied the distributed
optimization algorithms for two types of HMAS under an undi-
rected and connected communication graph. That is, systems
composed of both continuous-time and discrete-time dynamic
agents, and systems composed of both first-order and second-
order dynamic agents are considered. The optimal consensus
for linear MAS was studied in [35], for discrete-time HMAS in
[36], and the quadratic case was studied in [37]. However, as far
as we know, the optimal consensus on HMAS with probabilistic
time delay has not been studied, although heterogeneous sys-
tems and probabilistic time delay are very common in practice.
Therefore, this paper studies the optimal mean-square con-
sensus for HMAS with probabilistic time delay, which is very
significant both in theory and practice. However, due to the
different dynamics of agents in HMAS and the uncertainty of
probability delay, the normal methods that analyse the homoge-
neous MAS and deterministic time delay are no longer effective.
Because of this problem, the properties of convex function and
infinitesimal operator are fully used in this work. The main con-
tributions of this paper are as follows: (i) Mean-square consen-
sus for HMAS with probabilistic time delay is studied. (ii) Each
agent in the system has an objective function that is only known
by the agent itself. Moreover, the consensus state of agents’
position can make the sum of objective functions minimum. (iii)
Both the fixed and switched weighted-balanced topologies are
considered.

In the following paper, some necessary symbols, concepts
and lemmas are given in Section 2, the main results are presented

in Section 3, several examples are provided in Section 4, and the
conclusions are derived in Section 5.

2 PRELIMINARIES

In this paper, R denotes the real number set, Rm×n the set of
real matrix with m-row and n-column, In the n-dimensional iden-
tity matrix, 1 = (1,… , 1)T a column vector with all elements
being 1, 0 a zero matrix with a proper dimension, E[𝜒] the
mathematical expectation of 𝜒, and H > 0 indicates the matrix
H is positive definite. C2 function refers to the second-order
continuous differentiable function. And other symbols are in
the usual sense.

Denote G = (𝒱,Σ, A) a weighted graph, 𝒱 = {v1,… , vn}
the node set with every node representing an agent, Σ ⊆ 𝒱 ×
𝒱 the edge set of the graph G ,Υ = {1,… , n} the node index set,
and Υ1 = {1,… , m}, Υ2 = {m + 1,… , n}. In the digraph G , an
edge (vi , v j ) ∈ Σ means that the j th agent can receive the infor-
mation from the ith agent directly, and a directed path from v j to
vi is a sequence of the edges (v j , v j1

), (v j1
, v j2

),… , (v jk
, vi ). If there

is a directed path between any two distinct nodes, the graph is
connected. The neighbour set of agent i is i = { j |(v j , vi ) ∈
Σ}, i ∈ Υ, A = [ai j ] ∈ Rn×n the adjacency matrix, ai j > 0 if
(vi , v j ) ∈ Σ, otherwise ai j = 0, and aii = 0 for all i ∈ Υ. D =

diag{
∑n

j=1 a1 j ,… ,
∑n

j=1 an j } is the degree matrix of the graph
G and L = D − A the Laplacian matrix. A graph G is called
weighted balanced if there are some wi > 0, w j > 0, such that
the coupling weights of G satisfy wiai j = w j a ji for all i, j ∈ Υ.

Consider the following HMAS with m (m < n) first-order
agents and (n − m) second-order agents. Their dynamics are

ṗi (t ) = ui (t ), i ∈ Y1, (2.1)

and

ṗi (t ) = qi (t ),

q̇i (t ) = ui (t ),
i ∈ Y2. (2.2)

with pi (t ) ∈ R, qi (t ) ∈ R, and ui (t ) ∈ R being the position,
velocity, and the control input of agent i, respectively.

Practically, systems are often subjected to time delay and the
delay is usually random. That is there are two events as following

Event (I) : There is time delay in the system.
Event (II) : There is no time delay in the system.

Define the following random variable

𝜃(t ) =

{
1, Event (I) occurs,

0, Event (II) occurs.

Let the mathematical expectation of 𝜃(t ) be E[𝜃(t ) = 1] = 𝜃̃
with 0 ≤ 𝜃̃ ≤ 1. Then E[𝜃(t ) = 0] = 1 − 𝜃̃. The objective of
this work is to solve the mean-square consensus of systems
(2.1) and (2.2) with the probabilistic time delay such that the
consensus state makes the sum of objective functions g(p) =
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∑n

i=1 gi (pi ) minimum, where function gi (pi ) is the objective
function of agent i and is only known by agent i, i ∈ Υ.

Definition 2.1. Systems (2.1)-(2.2) are said to achieve the opti-
mal mean-square consensus, if there is

lim
t→∞

E[||pi (t ) − p∗||2] = 0, i ∈ Y,

lim
t→∞

E[||qi (t ) − q j (t )||2] = 0, i ∈ Y2,

and g(p∗ ) = min
n∑

i=1
gi (pi ).

Next, several necessary assumptions and lemmas are given
for the further analysis.

Assumption 2.1. Assume that the function gi : Rn → R, i ∈ Υ, is

strictly convex and twice differentiable. That is, for any x, y ∈ R, there is

gi (𝜗x + (1 − 𝜗)y) ≤ 𝜗gi (x ) + (1 − 𝜗)gi (y), 0 ≤ 𝜗 ≤ 1.

If and only if x = y, the equation holds. And the second derivative of

function gi , i ∈ Υ, exists.

Assumption 2.2. For any x, y ∈ Rn, function gi : Rn → R, i ∈ Υ,

is a C 2 function and its partial differential on xi , that is,
𝜕gi (x )

𝜕xi

is glob-

ally Lipschitz.

Denote fi (x ) =
𝜕gi (x )

𝜕xi

, i ∈ Υ. Then there is a positive 𝜌i > 0, such

that || fi (x ) − fi (y)|| ≤ 𝜌i ||x − y||, ∀ i ∈ Υ.

Assumption 2.3. The time delay d (t ) satisfies 0 ≤ d (t ) ≤ d0 with

the constant d0 > 0.

Lemma 2.1 ([38]). If the vector function 𝜙(t ) ∈ RN is differentiable

and the matrix Θ ∈ RN×N is positive definite, then there is

d−1
0 [𝜙(t ) − 𝜙(t − d (t ))]TΘ[𝜙(t ) − 𝜙(t − d (t ))]

≤ ∫
t

t−d (t )
𝜙̇T (s)Θ𝜙̇(s)ds, t ≥ 0,

where d (t ) satisfies Assumption 2.3.

3 MAIN RESULTS

3.1 Systems over fixed topology

For systems (2.1) and (2.2), design the following control proto-
col for the first-order agents

ui (t ) = 𝜃(t )𝛼
∑
j∈i

wiai j (p j (t − d (t )) − pi (t − d (t )))

+ (1 − 𝜃(t ))𝛼
∑
j∈i

wiai j (p j (t ) − pi (t ))

−𝛾 fi (pi ), i ∈ Υ1, (3.1)

and the following protocol for the second-order agents

ui (t ) = 𝜃(t )𝛼
∑
j∈i

wiaij(p j (t − d (t )) − pi (t − d (t )))

+ (1 − 𝜃(t ))𝛼
∑
j∈i

wiaij(p j (t ) − pi (t ))

−𝛽qi (t ) − 𝛾 fi (pi ), i ∈ Y2, (3.2)

with 𝛼, 𝛽, 𝛾 > 0 being the control gains.
Under the protocols (3.1) and (3.2), systems (2.1) and (2.2)

can be written as

ṗi (t ) = 𝛼𝜃(t )
∑
j∈i

wiaij(p j (t − d (t )) − pi (t − d (t )))

+𝛼(1 − 𝜃(t ))
∑
j∈i

wiaij(p j (t ) − pi (t ))

−𝛾 fi (pi ), i ∈ Y1, (3.3)

and

ṗi (t ) = qi (t ),

q̇i (t ) = 𝛼𝜃(t )
∑
j∈i

wiaij(p j (t − d (t )) − pi (t − d (t )))

+𝛼(1 − 𝜃(t ))
∑
j∈i

wiaij(p j (t ) − pi (t ))

−𝛽qi (t ) − 𝛾 fi (pi ), i ∈ Y2. (3.4)

For simplicity, denote the Laplacian matrix as

L =

[
L f f L fs

Ls f Lss

]
,

with

L f f =

⎡⎢⎢⎢⎣
l11 ⋯ l1m

⋮ ⋱ ⋮

lm1 ⋯ lmm

⎤⎥⎥⎥⎦,

L fs =

⎡⎢⎢⎢⎣
l1(m+1) ⋯ l1n

⋮ ⋱ ⋮

lm(m+1) ⋯ lmn

⎤⎥⎥⎥⎦,
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Ls f =

⎡⎢⎢⎢⎣
l(m+1)1 ⋯ l(m+1)m

⋮ ⋱ ⋮

ln1 … lnm

⎤⎥⎥⎥⎦,

Lss =

⎡⎢⎢⎢⎣
l(m+1)(m+1) ⋯ l(m+1)n

⋮ ⋱ ⋮

ln(m+1) ⋯ lnn

⎤⎥⎥⎥⎦.
Let p∗ = (p∗1 ,… , p∗n )T ,q∗ = (q∗

m+1,… , q∗n )T be the equilibrium
point of systems (3.3) and (3.4). Then at this equilibrium point
there is

𝛼𝜃(t )
∑
j∈i

wiaij(p j (t − d (t )) − pi (t − d (t )))

+ (1 − 𝜃(t ))𝛼
∑
j∈i

wiaij(p j (t ) − pi (t ))

− 𝛾 fi (pi ) = 0, i ∈ Y1, (3.5)

and

qi (t ) = 0,

𝛼𝜃(t )
∑
j∈i

wiai j (p j (t − d (t )) − pi (t − d (t )))

+ 𝛼(1 − 𝜃(t ))
∑
j∈i

wiai j (p j (t ) − pi (t ))

− 𝛽qi (t ) − 𝛾 fi (pi ) = 0, i ∈ Υ2.

(3.6)

The sum of (3.5) and (3.6) from 1 to n is

𝛼𝜃(t )
n∑

i=1

n∑
j=1

wiai j (p j (t − d (t )) − pi (t − d (t )))

+ 𝛼(1 − 𝜃(t ))
n∑

i=1

n∑
j=1

wiai j (p j (t ) − pi (t ))

− 𝛽

n∑
i=m+1

qi (t ) − 𝛾
n∑

i=1

fi (pi ) = 0,

(3.7)

and

n∑
i=m+1

qi (t ) = 0. (3.8)

Note that wiai j = w j a ji ,∀ i, j ∈ Υ. Then

n∑
i=1

n∑
j=1

wiai j (p j (t − d (t )) − pi (t − d (t ))) ≡ 0, (3.9)

and

n∑
i=1

n∑
j=1

wiai j (p j (t ) − pi (t )) ≡ 0. (3.10)

From (3.7) to (3.10) one can get, at the equilibrium point of sys-
tems (3.3) and (3.4), there is

∑n

i=1 fi (pi ) ≡ 0. Thus this equilib-
rium point is optimal of the function g(p), that is, p∗i = p∗, ∀ i ∈
Υ, and q∗

i
= 0, i ∈ Υ2.

Let 𝜉i (t ) = pi (t ) − p∗i , i ∈ Υ, 𝜂i (t ) = qi (t ) − q∗i = qi (t ), i ∈
Υ2. Then systems (3.3)-(3.4) can be written as

𝜉̇i (t ) = 𝛼𝜃(t )
∑
j∈i

wiai j (𝜉 j (t − d (t )) − 𝜉i (t − d (t )))

+ 𝛼(1 − 𝜃(t ))
∑
j∈i

wiai j (𝜉 j (t ) − 𝜉i (t ))

− 𝛾
(

fi (𝜉i (t ) + p∗ ) − fi (p∗ )
)
,

(3.11)

and for i ∈ Υ2, there is

𝜉̇i (t ) = 𝜂i (t ),

𝜂̇i (t ) = 𝛼𝜃(t )
∑
j∈i

wiai j (𝜉 j (t − d (t )) − 𝜉i (t − d (t )))

+ 𝛼(1 − 𝜃(t ))
∑
j∈i

wiai j (𝜉 j (t ) − 𝜉i (t ))

− 𝛾
(

fi (𝜉i (t ) + p∗ ) − fi (p∗ )
)
− 𝛽𝜂i (t ).

(3.12)

Denote

y1 =
(
𝜉1,… , 𝜉m

)T
,

y2 =
(
𝜉m+1,… , 𝜉n

)T
,

y3 =
(
𝜂m+1,… , 𝜂n

)T
,

g̃1 =
(

f1(𝜉1 + p∗ ) − f1(p∗ ),

⋯ , fm (𝜉m + p∗ ) − fm (p∗ )
)T

,

g̃2 =
(

fm+1(𝜉m+1 + p∗ ) − fm+1(p∗ ),

⋯ , fn(𝜉n + p∗ ) − fn(p∗ )
)T

,

and ỹ(t ) = (yT
1 , yT

2 , yT
3 )T , g̃(t ) = (g̃T

1 , 0, g̃T
2 )T ∈ R2n−m . Then

systems (3.11) and (3.12) can be described as

̇̃y(t ) = (𝛼(𝜃(t ) − 1)M1 +M2)ỹ(t )

− 𝛼𝜃(t )M1 ỹ(t − d (t )) − 𝛾g̃(t ),
(3.13)
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where

M1 =

⎡⎢⎢⎢⎣
W1L f f W1L fs 0

0 0 0

W2Ls f W2Lss 0

⎤⎥⎥⎥⎦ ∈ R2n−m,

M2 =

⎡⎢⎢⎢⎣
0 0 0

0 0 In−m

0 0 −𝛽In−m

⎤⎥⎥⎥⎦ ∈ R2n−m,

W1 = diag{w1,… , wm}, W2 = diag{wm+1,… , wn}.

Remark 3.1 Note that if Assumption 2.2 holds and
lim

t→∞
ỹ(t ) = 0, then lim

t→∞
g̃(t ) = 0.

Theorem 3.1. Suppose that the network is connected and weighted

balanced, and Assumptions 2.1–2.3 hold. Then under the control

protocols (3.1) and (3.2) with some 𝛼, 𝛽, 𝛾 > 0, systems (2.1) and

(2.2) can reach the optimal mean-square consensus with the objec-

tive function g(p) =
n∑

i=1
gi (p), if there exist symmetric matrices  >

0,  > 0, such that for certain d0 > 0, the following linear matrix

inequality

Ψ =

⎡⎢⎢⎢⎣
Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

[6pt ]Ψ31 Ψ32 Ψ33

⎤⎥⎥⎥⎦ < 0, (3.14)

holds where

Ψ11 = 2𝛼(𝜃̃ − 1)M1 + 2M2 + 𝛼
2d0(𝜃̃ − 1)2M T

1 M1

+ 𝛼d0(𝜃̃ − 1)M T
1 M2 + 𝛼d0(𝜃̃ − 1)M T

2 M1

− d−1
0  + d0M T

2 M2,

Ψ12 = −𝛼𝜃̃M1 − 𝛼
2d0𝜃̃(𝜃̃ − 1)M T

1 M1

− 𝛼d0𝜃̃M T
2 M1 + d−1

0 ,

Ψ13 = −𝛾 − 𝛾𝛼d0(𝜃̃ − 1)M T
1  − 𝛾d0M T

2 ,

Ψ22 = 𝛼
2d0𝜃̃

2M T
1 M1 − d−1

0 ,

Ψ23 = 𝛾𝛼d0𝜃̃M1, Ψ33 = d0𝛾
2,

Ψ21 = Ψ
T
12, Ψ31 = Ψ

T
13, Ψ32 = Ψ

T
23.

Proof. Choose the candidate Lyapunov function

 (ỹt ) = 1(ỹt ) + 2(ỹt ), (3.15)

with

1(ỹt ) = ỹT (t ) ỹ(t ),

2(ỹt ) = ∫
t

t−d0

(s − t + d0) ̇̃yT (s) ̇̃y(s)ds,

and ỹt is the short form of function ỹ(t ), the same as other sim-
ilar symbols in the following. The infinitesimal operator  of
function  (ỹt ) is defined as

( (ỹt )) = lim
Δt→0

1
Δt

{
E[ (ỹt+Δt )| (ỹt )] −  (ỹt )

}
. (3.16)

Then along (3.13) there is

(1(ỹt )) = ỹT (t )(2𝛼(𝜃̃ − 1)M1 + 2M2)ỹ(t )

+ ỹT (t )(−2𝛼𝜃̃M1)ỹ(t − d (t ))

+ ỹT (t )(−2𝛾 )g̃(t ),

(3.17)

and

(2(ỹt ))

= d0((𝛼(𝜃̃ − 1)M1 +M2)ỹ(t ) − 𝛼𝜃̃M1ỹ(t − d (t )) − 𝛾g̃(t ))
T

((𝛼(𝜃̃ − 1)M1 +M2)ỹ(t )

− 𝛼𝜃̃M1ỹ(t − d (t )) − 𝛾g̃(t ))

− ∫
t

t−d0

̇̃yT (s) ̇̃y(s)ds.

(3.18)
According to Assumption 2.3 and Lemma 2.1 one can obtain

∫
t

t−d0

̇̃yT (s) ̇̃y(s)ds ≥ ∫
t

t−d (t )

̇̃yT (s) ̇̃y(s)ds

≥ d−1
0 [ỹ(t ) − ỹ(t − d (t ))]T [ỹ(t ) − ỹ(t − d (t ))].

(3.19)

Based on (3.18) and (3.19) there is

(2(ỹt )) ≤ d0((𝛼(𝜃̃ − 1)M1 +M2)ỹ(t ) − 𝛼𝜃̃M1ỹ(t − d (t ))

−𝛾g̃(t ))T ((𝛼(𝜃̃ − 1)M1 +M2)ỹ(t )

−𝛼𝜃̃M1ỹ(t − d (t )) − 𝛾g̃(t ))

− d−1
0 (ỹ(t ) − ỹ(t − d (t )))T (ỹ(t ) − ỹ(t − d (t )))

= ỹT (t )(d0(𝛼(𝜃̃ − 1)M T
1 +M T

2 )(𝛼(𝜃̃ − 1)M1

+M2) − d−1
0 )ỹ(t ) + ỹT (t )(−𝛼d0𝜃̃(𝛼(𝜃̃ − 1)M T

1
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+M T
2 )M1 + d−1

0 )ỹ(t − d (t ))

+ ỹT (t )(−𝛾d0(𝛼(𝜃̃ − 1)M T
1 +M T

2 ))g̃(t )

+ ỹT (t − d (t ))(𝛼d0𝜃̃M T
1 (𝛼(𝜃̃ − 1)M1 +M2)

+ d−1
0 )ỹ(t ) + ỹT (t − d (t ))(d0𝛼

2𝜃̃2M T
1 M1

− d−1
0 )ỹ(t − d (t ))

+ ỹT (t − d (t ))(𝛾𝛼d0𝜃̃M T
1 )g̃(t )

+ g̃T (t )(−𝛾d0(𝛼(𝜃̃ − 1)M1 +M2))ỹ(t )

+ g̃T (t )(𝛾𝛼d0𝜃̃M1)ỹ(t − d (t ))

+ g̃T (t )(𝛾2d0)g̃(t ). (3.20)

Then from (3.15), (3.17)–(3.20) one can get

( (t )) = (1(t )) + (2(t ))

≤ ỹT (t )(2𝛼(𝜃̃ − 1)M1 + 2M2

+ 𝛼2d0(𝜃̃ − 1)2M T
1 M1 + 𝛼d0(𝜃̃ − 1)M T

1 M2

+ 𝛼d0(𝜃̃ − 1)M T
2 M1 + d0M T

2 M2 − d−1
0 )ỹ(t )

+ ỹT (t )(−𝛼𝜃̃M1 − 𝛼
2d0𝜃̃(𝜃̃ − 1)M T

1 M1

− 𝛼d0𝜃̃M T
2 M1 + d−1

0 )ỹ(t − d (t ))

+ ỹT (t )(−𝛾P − 𝛾𝛼d0(𝜃̃ − 1)M T
1 

− 𝛾d0M T
2 )g̃(t ) + ỹT (t − d (t ))(−𝛼𝜃̃M T

1 
− 𝛼2d0𝜃̃(𝜃̃ − 1)M T

1 M1

− 𝛼d0𝜃̃M T
1 M2 + d−1

0 )ỹ(t )

+ ỹT (t − d (t ))(d0𝛼
2𝜃̃2M T

1 M1

− d−1
0 )ỹ(t − d (t ))

+ ỹT (t − d (t ))(𝛾𝛼d0𝜃̃M T
1 )g̃(t )

+ g̃T (t )(−𝛾 − 𝛾𝛼d0(𝜃̃ − 1)M1

− 𝛾d0M2))ỹ(t )

+ g̃T (t )(𝛾𝛼d0𝜃̃M1)ỹ(t − d (t ))

+ g̃T (t )(𝛾2d0)g̃(t ).
(3.21)

Let Ỹ = [ ỹT (t ) ỹT (t − d (t )) g̃T (t ) ]T . Then (3.21) can be writ-
ten as

( (ỹt )) ≤ Ỹ TΨỸ , (3.22)

which implies

E[( (ỹt ))] ≤ E[Ỹ TΨỸ ] = E[Ỹ ]TΨE[Ỹ ]. (3.23)

According to (3.14) and (3.23), one can obtain E[( (ỹt ))] < 0.
Then the original of system (3.13) is mean-square stability,
which implies that limt→∞ E[||ỹ2(t )||] = 0. This together with
systems (3.11) and (3.12) gives limt→∞ E[||𝜉(t )||2] = 0 and
limt→∞ E[||𝜂(t )||2] = 0. That is, limt→∞ E[||pi (t ) − p∗||2] = 0
and limt→∞ E[||qi (t ) − q∗||2] = 0. Note that g(p∗ ) =
min

∑n

i=1 gi (p). The proof is completed. □

3.2 Systems over switching topology

Due to the complexity of environment, in practice, the com-
munication between agents usually varies. Hence this section
considers systems (2.1) and (2.2) over the switching topolo-
gies Gk, k ∈ ℕ, which are connected and weighted balanced,
ℕ = {1, 2,… ,ℵ} is the index set and ℵ a finite positive integer.
That is for the adjacency matrix Ak = [ak

i j ]n×n of graph Gk, there

exists wk
i such that wk

i ak
i j = wk

j ak
ji , k ∈ ℕ.

For systems (2.1) and (2.2) over the switching weight
balanced network Gk, k ∈ ℕ, which switches in sequence
G1, G2,… , Gℵ, design the following control protocol for the
first-order agents

ui (t ) = 𝛼𝜃(t )
∑
j∈i

wk
i ak

i j (p j (t − d (t )) − pi (t − d (t )))

+ 𝛼(1 − 𝜃(t ))
∑
j∈i

wk
i ak

i j (p j (t ) − pi (t ))

− 𝛾 fi (pi ), ∀ k ∈ ℕ, i ∈ Υ1,

(3.24)

and the following protocol for the second-order agents

ui (t ) = 𝛼𝜃(t )
∑
j∈i

wk
i ak

i j (p j (t − d (t )) − pi (t − d (t )))

+ 𝛼(1 − 𝜃(t ))
∑
j∈i

wk
i ak

i j (p j (t ) − pi (t ))

− 𝛽qi (t ) − 𝛾 fi (pi ), ∀ k ∈ ℕ, i ∈ Υ2.

(3.25)

Then similar the analysis on the fixed topology, there is the fol-
lowing result.

Theorem 3.2. Suppose that Assumptions 2.1–2.3 hold and the net-

work is switched among the weighted balanced graph Gk, k ∈ ℕ. Then

under the control protocols (3.24) and (3.25) with some 𝛼, 𝛽, 𝛾 > 0, sys-

tems (2.1) and (2.2) can reach the optimal mean-square consensus with

the objective function g(p) =
∑n

i=1 gi (p), if for any k ∈ ℕ, there exist

symmetric matrices k > 0,k > 0, such that for certain d0 > 0, the
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following inequalities

Ψk =

⎡⎢⎢⎢⎢⎣
Ψk

11 Ψk
12 Ψk

13

Ψk
21 Ψk

22 Ψk
23

Ψk
31 Ψk

32 Ψk
33

⎤⎥⎥⎥⎥⎦
< 0,

hold, where

Ψk
11 = 2𝛼(𝜃̃ − 1)kM1k

+ 2kM2k

+ 𝛼2d0(𝜃̃ − 1)2M T
1k
kM1k

− d−1
0 k

+ 𝛼d0(𝜃̃ − 1)M T
1k
kM2k + d0M T

2k
kM2k

+ 𝛼d0(𝜃̃ − 1)M T
2k
kM1k,

Ψk
12 = −𝛼𝜃̃kM1k − 𝛼

2d0𝜃̃(𝜃̃ − 1)M T
1k
kM1k

− 𝛼d0𝜃̃M T
2k
kM1k + d−1

0 k,

Ψk
13 = −𝛾k − 𝛾𝛼d0(𝜃̃ − 1)M T

1k
k − 𝛾d0M T

2k
k,

Ψk
22 = 𝛼

2d0𝜃̃
2M T

1k
kM1k − d−1

0 k,

Ψk
23 = 𝛾𝛼d0𝜃̃kM1k, Ψk

33 = d0𝛾
2k,

Ψk
21 = (Ψk

12)T , Ψk
31 = (Ψk

13)T , Ψk
32 = (Ψk

23)T .

The proof of Theorem 3.2 is similar to the argument in The-
orem 3.1. Hence it is omitted here.

Remark 3.2. According to the control protocols (3.1) and (3.2),
and (3.24) and (3.25), 𝜃̃ ≡ 1 implies the delay case, that is Event
(I) occurs with probability one. And 𝜃̃ ≡ 0 implies the delay free
case, that is Event (II) occurs with probability one. Hence the
delay system and the delay free system are the special cases of
this work.

Remark 3.3. For simplicity, only one dimensional system is con-
sidered in this work. It should be pointed out that the result
is also valid for the multi-dimensional system, which can be
obtained by using the Kronecker product of matrix.

4 EXAMPLES

Example. Consider a system with two first-order
agents denoted as i = 1, 2, and three second-order agents
denoted as i = 3, 4, 5. Choose the initial states p(0) =
(−6,−12,−3, 6, 12)T , q(0) = (3, 10,−6)T . The adjacency
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FIGURE 1 Mean value of agents’ position error over G1 with d (t ) =
0.02|cos t | and 𝜃̃ = 0.3

matrices of graphs G1, G2, G3 are given as

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 2

3 0 3 0 0

0 2 0 2 0

0 0 3 0 3

2 0 0 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 3 3 0

0 0 2 0 0

3 3 0 3 0

2 0 2 0 2

0 0 0 3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

A3 =

⎡⎢⎢⎢⎢⎣
0 3 0 0 3
2 0 0 2 2
0 0 0 3 3
0 2 2 0 0
3 3 3 0 0

⎤⎥⎥⎥⎥⎦
,

and the corresponding coupling coefficients are A1
= [w11,

w12, w13, w14, w15] = [3, 2, 3, 2, 3], where w11, w12, w13, w14, w15 are

the coupling weight of graph G1. Similarly, A2
=A3

=
[2, 3, 2, 3, 2]. The objective functions gi (p) of agent i are given as

g1(p) = (p+ 1)2 + 1, g2(p) = (p+ 5)2 + 3, g3(p) = (p+ 3)2 +
1, g4(p) = (p− 5)2 − 1, g5(p) = (p+ 6)2.

Note that graphs G1, G2 and G3 are connected and weighted
balanced, and p∗ = −2 is the optimal point of the function

g(p) =
∑5

i=1 gi (p). That is g(−2) = min
5∑

i=1
gi (p) = 80. For sim-

plicity, in all the simulations, the parameters are chosen as 𝛼 =
3, 𝛽 = 0.5, 𝛾 = 0.04.

(i) For systems (2.1) and (2.2) over G1, under protocols (3.1)
and (3.2) with 𝜃̃ = 0.3, d (t ) = 0.02| cos t |, by solving the
linear matrix inequality (3.14) one can get d0 ≤ 0.067. Mean
values of agents’ position error and velocity error are given
in Figures 1 and 2, which show that the mean values of all
agents’ states achieve together. Especially, the mean value
of positions converges to the optimal point p∗ = −2.
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FIGURE 2 Mean value of agents’ velocity error over G1 with d (t ) =
0.02|cos t | and 𝜃̃ = 0.3
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FIGURE 3 Mean value of agents’ position error over switching topology
with d (t ) = 0.02|cos t | and 𝜃̃ = 0.3

(ii) For systems (2.1) and (2.2) over the switching topology,
which switches in sequence G1, G2, G3 with the switch-
ing period T = 1 s,under the control protocols (3.24) and
(3.25) with 𝜃̃ = 0.3, d (t ) = 0.02| cos t |, the mean values
of agents’ state error are given in Figures 3 and 4, which
illustrate that the mean value of all agents’ states achieves
together and the mean value of position states converges
to the optimal point p∗ = −2.

(iii) For systems (2.1) and (2.2) over G1, under protocols (3.1)
and (3.2), Figures 5 and 6 show the mean value of all agents’
position and velocity error with d (t ) = 0.02|cos t |, 𝜃̃ =
0.6. For systems (2.1) and (2.2) over G1 under protocols
(3.1) and (3.2), when 𝜃̃ = 0.9, by solving the linear matrix
inequality (3.14) one can get d0 ≤ 0.017. Figures 7 and 8
and Figures 11 and 12 show the mean value of all agents’
position and velocity error with d (t ) = 0.015|cos t |,𝜃̃ =
0.9, and d (t ) = 0.02|cos t |, 𝜃̃ = 0.9, respectively. Figures 7
and 8 illustrate that the mean value of positions for agents
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FIGURE 4 Mean value of agents’ velocity error over switching topology
with d (t ) = 0.02|cos t | and 𝜃̃ = 0.3
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FIGURE 5 Mean value of agents’ position error over G1 with d (t ) =
0.02|cos t | and 𝜃̃ = 0.6

0 10 20 30 40 50 60 70 80

time t

0

200

400

600

800

1000

1200

1400

1600

E
[||

q
i(t

)-
q j(t

)||
]2

q
3
(t)

q
4
(t)

q
5
(t)

FIGURE 6 Mean value of agents’ velocity error over G1 with d (t ) =
0.02|cos t | and 𝜃̃ = 0.6



SUN ET AL. 1051

0 10 20 30 40 50 60 70 80 90 100

time t

0

20

40

60

80

100

120

140

160

180

200
E

[||
p

i(t
)-

p* ||]
2

p
1
(t)

p
2
(t)

p
3
(t)

p
4
(t)

p
5
(t)

FIGURE 7 Mean value of agents’ position error over G1 with d (t ) =
0.015|cos t | and 𝜃̃ = 0.9
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FIGURE 8 Mean value of agents’ velocity error over G1 with d (t ) =
0.015|cos t | and 𝜃̃ = 0.9
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FIGURE 9 Mean value of agents’ position error over G1 with d (t ) =
100|cos t | and 𝜃̃ = 0
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FIGURE 10 Mean value of agents’ velocity error over G1 with d (t ) =
100|cos t | and 𝜃̃ = 0
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FIGURE 11 Mean value of agents’ position error over G1 with d (t ) =
0.02|cos t | and 𝜃̃ = 0.9
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FIGURE 12 Mean value of agents’ velocity error over G1 with d (t ) =
0.02|cos t | and 𝜃̃ = 0.9
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reach the optimal point p∗ = −2 and all the velocities reach
together, while Figures 11 and 12 illustrate that the mean
value of agents’ positions and velocities cannot achieve
together when d0 > 0.017.

(iv) For systems (2.1) and (2.2) over G1, under protocols (3.1)
and (3.2) with d (t ) = 100|cos t | and 𝜃̃ = 0, the mean value
trajectories of agents’ state error are given in Figures 9 and
10, which show that the mean value of all agents’ states
achieve together.

Remark 4.1. Figures 1 and 2 and Figures 5 and 6 illustrate that,
the mean values of agents’ states achieve together, and the con-

sensus state makes the objective function g(p) =
5∑

i=1
gi (p) opti-

mal, which verifies the effectiveness of the main results.

Remark 4.2. Comparing Figures 1 and 2 to Figures 7 and 8 and
Figures 11 and 12 one can find that, the greater the probability
of time delay, the slower the convergence velocity. Compared
with Figures 1 and 2 and Figures 11 and 12 one can find, the
greater the probability of time delay, the smaller the maximum
tolerable time delay.

Remark 4.3. Figures 9 and 10 illustrate that if 𝜃̃ ≡ 0, that is, the
probability of time delay is zero, then the time delay does not
affect the convergence.

5 CONCLUSIONS

This paper studies the optimal mean-square consensus for
HMAS both over fixed and switched weighted-balanced topolo-
gies. By adopting probability statistics, stochastic process,
matrix theory and stability method, the control protocol is
designed and sufficient conditions for the optimal consensus
are obtained. The presented simulations verify the potential cor-
rectness of the main results. The related problem of systems
with noises or stochastic network is the future work to be done.
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