Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Dekov, Vesselin M; Marchig, Vesna; Rajta, I; Uzonyi, I (2003): (Tables 3-4, pages 112-115) Chemical composition of Fe-Mn micronodules from metalliferous sediments of the East Pacific Rise and the Mid-Atlantic Ridge TAG areas [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.872398, Supplement to: Dekov, VM et al. (2003): Fe–Mn micronodules born in the metalliferous sediments of two spreading centres: the East Pacific Rise and Mid-Atlantic Ridge. Marine Geology, 199(1-2), 101-121, https://doi.org/10.1016/S0025-3227(03)00124-5

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
A geochemical study of Fe-Mn micronodules associated with the metalliferous sediments at two spreading centres has shown that their composition depends on the site of micronodule formation. Close to the hydrothermal mounds they exhibit significant variation in elemental content related to the type of hydrothermal discharge (low- or high-temperature), the nature of primary hydrothermal matter (plume fall-out, oxidised sulfides), and the extent of diagenesis. In this environment three types of micronodules can be distinguished although not observed as pure end-members: (1) diagenetic micronodules; (2) micronodules formed generally from the plume fall-out of oxyhydroxide matter; and (3) micronodules grown on the oxidised sulfide grains supplied to the sediments by slumping or fall-out of nearby buoyant plume. Away from the active spreading centre, the hydrothermal signatures of primary precipitates are gradually masked and hydrogenous/diagenetic processes lead the micronodule formation. Composition of micronodules becomes less variable. Well-pronounced, deep rift valleys confine the hydrothermal plume, which brings the hydrothermal suspension into contact with restricted volumes of seawater and, consequently, weakens the hydrogenous influence on the primary hydrothermal matter. Shallow rift valleys do not confine hydrothermal plumes, which are scattered over hundreds of kilometres by bottom currents. This brings the hydrothermal suspended matter into contact with large volumes of seawater. Extensive scavenging occurs, which masks the hydrothermal signal away from the spreading axis and enhances the hydrogenous one. Thus, the ridge crest morphology, defined by the spreading rate, is supposed to play a certain role, though indirect, in the chemical composition of the primary precipitates and, consequently, in the composition of the micronodules formed.
Source:
Grant, John Bruce; Moore, Carla J; Alameddin, George; Chen, Kuiying; Barton, Mark (1992): The NOAA and MMS Marine Minerals Geochemical Database. National Geophysical Data Center, NOAA, https://doi.org/10.7289/V52Z13FT
Further details:
Warnken, Robin R; Virden, William T; Moore, Carla J (1992): The NOAA and MMS Marine Minerals Bibliography. National Geophysical Data Center, NOAA, https://doi.org/10.7289/V53X84KN
Coverage:
Median Latitude: -0.541311 * Median Longitude: -83.559852 * South-bound Latitude: -22.080000 * West-bound Longitude: -114.723333 * North-bound Latitude: 26.151200 * East-bound Longitude: -44.809800
Minimum DEPTH, sediment/rock: 0.010 m * Maximum DEPTH, sediment/rock: 0.885 m
Event(s):
AMK15-1785 * Latitude: 26.135000 * Longitude: -44.819700 * Elevation: -3600.0 m * Location: Central Atlantic * Campaign: AMK15 * Basis: Akademik Mstislav Keldysh * Method/Device: Gravity corer (GC)
AMK15-1808 * Latitude: 26.148300 * Longitude: -44.810000 * Elevation: -3507.0 m * Location: Central Atlantic * Campaign: AMK15 * Basis: Akademik Mstislav Keldysh * Method/Device: Box corer (BC)
AMK15-1810 * Latitude: 26.138700 * Longitude: -44.809800 * Elevation: -3500.0 m * Location: Central Atlantic * Campaign: AMK15 * Basis: Akademik Mstislav Keldysh * Method/Device: Gravity corer (GC)
Comment:
The samples have been hermetically stored at room temperature in polythene boxes (50 and 100 ml). Before analysis, all samples were rinsed with distilled water to remove sea salts.
From 1983 until 1989 NOAA-NCEI compiled the NOAA-MMS Marine Minerals Geochemical Database from journal articles, technical reports and unpublished sources from other institutions. At the time it was the most extended data compilation on ferromanganese deposits world wide. Initially published in a proprietary format incompatible with present day standards it was jointly decided by AWI and NOAA to transcribe this legacy data into PANGAEA. This transfer is augmented by a careful checking of the original sources when available and the encoding of ancillary information (sample description, method of analysis...) not present in the NOAA-MMS database.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEventDekov, Vesselin M
2Latitude of eventLatitudeDekov, Vesselin M
3Longitude of eventLongitudeDekov, Vesselin M
4Elevation of eventElevationmDekov, Vesselin M
5Method/Device of eventMethod/DeviceDekov, Vesselin M
6IdentificationIDDekov, Vesselin M
7DEPTH, sediment/rockDepth sedmDekov, Vesselin MGeocode
8Depth, top/minDepth topmDekov, Vesselin M
9Depth, bottom/maxDepth botmDekov, Vesselin M
10PotassiumK%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
11SodiumNa%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
12MagnesiumMg%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
13CalciumCa%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
14IronFe%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
15ManganeseMn%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
16AluminiumAl%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
17PhosphorusP%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
18SiliconSi%Dekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
19BoronBmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
20BariumBamg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
21BerylliumBemg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
22BismuthBimg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
23CadmiumCdmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
24CobaltComg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
25ChromiumCrmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
26CaesiumCsmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
27CopperCumg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
28GalliumGamg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
29GermaniumGemg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
30HafniumHfmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
31MercuryHgmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
32IndiumInmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
33LithiumLimg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
34MolybdenumMomg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
35NiobiumNbmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
36NickelNimg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
37LeadPbmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
38RubidiumRbmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
39AntimonySbmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
40ScandiumScmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
41SeleniumSemg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
42TinSnmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
43StrontiumSrmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
44TantalumTamg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
45TelluriumTemg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
46ThoriumThmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
47TitaniumTimg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
48ThalliumTlmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
49UraniumUmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
50VanadiumVmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
51TungstenWmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
52ZincZnmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
53ZirconiumZrmg/kgDekov, Vesselin MICP-OES, Inductively coupled plasma - optical emission spectrometry
54LanthanumLamg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
55CeriumCemg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
56PraseodymiumPrmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
57NeodymiumNdmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
58SamariumSmmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
59EuropiumEumg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
60GadoliniumGdmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
61TerbiumTbmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
62DysprosiumDymg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
63YttriumYmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
64HolmiumHomg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
65ErbiumErmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
66ThuliumTmmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
67YtterbiumYbmg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
68LutetiumLumg/kgDekov, Vesselin MInductively coupled plasma - mass spectrometry (ICP-MS)
69Deposit typeDeposit typeDekov, Vesselin M
70MassMassmgDekov, Vesselin M
71VolumeVolmlDekov, Vesselin M
72Sediment typeSedimentDekov, Vesselin M
Size:
1440 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML