Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Biswas, Haimanti; Jie, Jin; Li, Ying; Zhang, Guosen; Zhu, Zhuoyi; Wu, Ying; Zhang, Guoling; Li, Yanwei; Liu, Sumei; Zhang, Jing (2015): Response of a natural phytoplankton community from the Qingdao coast (Yellow Sea, China) to variable CO2 levels over a short-term incubation experiment [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.860225, Supplement to: Biswas, H et al. (2015): Response of a natural phytoplankton community from the Qingdao coast (Yellow Sea, China) to variable CO2 levels over a short-term incubation experiment. Current Science, 108(10), 1901-1909, https://www.currentscience.ac.in/Volumes/108/10/1901.pdf

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.
Keyword(s):
Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Coast and continental shelf; Community composition and diversity; Entire community; Laboratory experiment; North Pacific; Pelagos; Primary production/Photosynthesis; Temperate
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb
Comment:
The value of biological parameters under 3 pCO2 levels are the final day value. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-05-13.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeBiswas, Haimantistudy
2TreatmentTreatBiswas, Haimanti
3Chlorophyll aChl aµg/lBiswas, Haimanti
4Chlorophyll a, standard deviationChl a std dev±Biswas, Haimanti
5Carbon, organic, particulatePOCµmol/lBiswas, Haimanti
6Carbon, organic, particulate, standard deviationPOC std dev±Biswas, Haimanti
7Chlorophyll a/particulate organic carbon ratioChl a/POCBiswas, Haimanti
8Chlorophyll a/particulate organic carbon ratio, standard deviationChl a/POC std dev±Biswas, Haimanti
9Nitrogen, organic, particulatePONµmol/lBiswas, Haimanti
10Nitrogen, organic, particulate, standard deviationPON std dev±Biswas, Haimanti
11Phosphorus, organic, particulatePOPµmol/lBiswas, Haimanti
12Particulate organic phosphorus, standard deviationPOP std dev±Biswas, Haimanti
13Carbon/Nitrogen ratioC/NBiswas, Haimanti
14Carbon/Nitrogen ratio, standard deviationC/N std dev±Biswas, Haimanti
15Carbon/Phosphorus ratioC/PBiswas, Haimanti
16Carbon/Phosphorus ratio, standard deviationC/P std dev±Biswas, Haimanti
17Nitrogen/Phosphorus ratioN/PBiswas, Haimanti
18Nitrogen/Phosphorus ratio, standard deviationN/P std dev±Biswas, Haimanti
19Nitrogen, inorganic, dissolvedDINµmol/lBiswas, Haimanti
20Nitrogen, inorganic, dissolved, standard deviationDIN std dev±Biswas, Haimanti
21SilicateSi(OH)4µmol/lBiswas, Haimanti
22Silicate, standard deviationSi(OH)4 std dev±Biswas, Haimanti
23Phosphorus, inorganic, dissolvedDIPµmol/lBiswas, Haimanti
24Phosphorus, inorganic, dissolved, standard deviationDIP std dev±Biswas, Haimanti
25Nitrogen, inorganic, dissolved/Phosphorus, inorganic, dissolved ratioDIN/DIPBiswas, Haimanti
26Nitrogen, inorganic, dissolved/Phosphorus, inorganic, dissolved ratio, standard deviationDIN/DIP std dev±Biswas, Haimanti
27Nitrogen/Silicon ratioN/SiBiswas, Haimanti
28Nitrogen/Silicon ratio, standard deviationN/Si std dev±Biswas, Haimanti
29Carbon, organic, dissolvedDOCµmol/lBiswas, Haimanti
30Carbon, organic, dissolved, standard deviationDOC std dev±Biswas, Haimanti
31Dissolved inorganic nitrogen, uptakeDIN uptµmol/lBiswas, Haimanti
32Dissolved inorganic nitrogen, uptake, standard deviationDIN upt std dev±Biswas, Haimanti
33Silicate uptakeSi(OH)4 uptµmol/lBiswas, Haimanti
34Silicon uptake, standard deviationSi upt std dev±Biswas, Haimanti
35Phosphorus uptakeP uptµmol/lBiswas, Haimanti
36Phosphorus uptake, standard deviationP upt std dev±Biswas, Haimanti
37Silicon/Nitrogen uptake ratioSi/N uptBiswas, Haimanti
38Silicon/Nitrogen uptake ratio, standard deviationSi/N upt std dev±Biswas, Haimanti
39Nitrogen/Phosphorus uptake ratioN/P uptBiswas, Haimanti
40Nitrogen/Phosphorus uptake ratio, standard deviationN/P upt std dev±Biswas, Haimanti
41Silicon/phosphorus uptake ratioSi/P uptBiswas, Haimanti
42Silicon/phosphorus uptake ratio, standard deviationSi/P upt std dev±Biswas, Haimanti
43Consumption of carbon, inorganic, dissolvedDIC consumptµmol/lBiswas, Haimantinet
44Consumption of carbon, inorganic, dissolved, standard deviationDIC consumpt std dev±Biswas, Haimantinet
45Carbon, organic, dissolved + particulate, net productionNP DOC+POCµmol/lBiswas, Haimanti
46Carbon, organic, dissolved + particulate, net production, standard deviationNP DOC+POC std dev±Biswas, Haimanti
47δ13Cδ13C‰ PDBBiswas, Haimanti
48δ13C, standard deviationδ13C std dev±Biswas, Haimanti
49δ15Nδ15N‰ airBiswas, Haimanti
50δ15N, standard deviationδ15N std dev±Biswas, Haimanti
51Fucoxanthin/chlorophyll a ratioFuco/Chl aBiswas, Haimanti
52Fucoxanthin/chlorophyll a ratio, standard devitationFuco/Chl a std dev±Biswas, Haimanti
53Diatoxanthin indexDT indexBiswas, Haimanti
54Diatoxanthin index, standard deviationDT index std dev±Biswas, Haimanti
55Chlorophyll a/Chlorophyll b ratioChl a/Chl bBiswas, Haimanti
56Violaxanthin/antheraxanthin ratioViola/AnthxBiswas, Haimanti
57Violaxanthin/antheraxanthin ratio, standard deviationViola/Anthx std dev±Biswas, Haimanti
58Lutein/chlorophyll a ratioLut/Chl aBiswas, Haimanti
59Lutein/chlorophyll a ratio, standard deviationLut/Chl a std dev±Biswas, Haimanti
60Violaxanthin/Zeaxanthin ratioViola/ZeaBiswas, Haimanti
61Violaxanthin/Zeaxanthin ratio, standard deviationViola/Zea std dev±Biswas, Haimanti
62Neoxanthin/chlorophyll a ratioNeo/chl aBiswas, Haimanti
63Neoxanthin/chlorophyll a ratio, standard deviationNeo/Chl a std dev±Biswas, Haimanti
64Violaxanthin/chlorophyll a ratioViola/chl aBiswas, Haimanti
65Violaxanthin/chlorophyll a ratio, standard deviationViola/Chl a std dev±Biswas, Haimanti
66Bacteria, heterotrophicHBA#/mlBiswas, Haimanti
67Bacteria, heterotrophic, standard deviationBact het std dev±Biswas, Haimanti
68PicoeukaryotesPEuk#/mlBiswas, Haimanti
69Picoeukaryotes, standard deviationPEuk std dev±Biswas, Haimanti
70SynechococcusSynechococcus#/mlBiswas, Haimanti
71Synechococcus spp., standard deviationSynechococcus spp. std dev±Biswas, Haimanti
72Temperature, waterTemp°CBiswas, Haimanti
73SalinitySalBiswas, Haimanti
74Alkalinity, totalATµmol/kgBiswas, Haimantiinitial
75Carbon, inorganic, dissolvedDICµmol/kgBiswas, Haimantiinitial
76Alkalinity, totalATµmol/kgBiswas, Haimantifinal
77Carbon, inorganic, dissolvedDICµmol/kgBiswas, Haimantifinal
78Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
79pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial,total scale
80Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
81Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
82Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
83Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
84Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
85Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
86Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
87pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)final,total scale
88Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
89Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
90Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
91Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
92Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
93Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
94Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
679 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML