Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Choi, Su-Jin; Wang, Yujie; Salawitch, Ross J; Canty, T; Joiner, J; Zeng, T; Kurosu, T P; Chance, K; Richter, Astrid; Huey, L G; Liao, Jingjuan; Neuman, J A; Nowak, J B; Dibb, J E; Weinheimer, A J; Diskin, G S; Ryerson, T B; da Silva, A; Curry, J; Kinnison, D; Tilmes, S; Levelt, P F (2012): Aircraft and satellite derived arctic BrO profiles of the tropospheric column [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.847307, Supplement to: Choi, S-J et al. (2012): Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmospheric Chemistry and Physics, 12(3), 1255-1285, https://doi.org/10.5194/acp-12-1255-2012

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7), for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.
Funding:
German Research Foundation (DFG), grant/award no. 5472008: Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas
Coverage:
Median Latitude: 71.441228 * Median Longitude: -152.099030 * South-bound Latitude: 64.800000 * West-bound Longitude: -165.500000 * North-bound Latitude: 87.200000 * East-bound Longitude: -127.300000
Date/Time Start: 2008-04-12T00:00:00 * Date/Time End: 2008-04-21T00:00:00
Event(s):
Barrow_Utqiagvik * Latitude: 71.300000 * Longitude: -156.600000 * Location: Barrow, Alaska, USA * Method/Device: Multiple investigations (MULT)
Comment:
Data extracted in the frame of a joint ICSTI/PANGAEA IPY effort, see http://doi.pangaea.de/10.1594/PANGAEA.150150
Size:
4 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: