NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering StudiesMercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury's relatively featureless visible-near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size less than 45 micron) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury's surface composition.
Document ID
20150008969
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Domingue, Deborah L.
(Planetary Science Inst. Tucson, AZ, United States)
Chapman, Clark. R.
(Southwest Research Inst. Boulder, CO, United States)
Killen, Rosemary M.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Zurbuchen, Thomas H.
(Michigan Univ. Ann Arbor, MI, United States)
Gilbert, Jason A.
(Michigan Univ. Ann Arbor, MI, United States)
Sarantos, Menelaos
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Benna, Mehdi
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Slavin, James A.
(Michigan Univ. Ann Arbor, MI, United States)
Schriver, David
(California Univ. Los Angeles, CA, United States)
Travnicek, Pavel M.
(California Univ. Berkeley, CA, United States)
Orlando, Thomas M.
(Georgia Inst. of Tech. Arlington, VA, United States)
Sprague, Ann L.
(Lunar and Planetary Inst. Houston, TX, United States)
Blewett, David T.
(Johns Hopkins Univ. Laurel, MD, United States)
Gillis-Davis, Jeffrey J.
(Hawaii Univ. Honolulu, HI, United States)
Feldman, William C.
(Planetary Science Inst. Tucson, AZ, United States)
Lawrence, David J.
(Johns Hopkins Univ. Laurel, MD, United States)
Ho, George C.
(Johns Hopkins Univ. Laurel, MD, United States)
Ebel, Denton S.
(American Museum of Natural History New York, NY, United States)
Nittler, Larry R.
(Carnegie Institution of Washington Washington, DC, United States)
Vilas, Faith
(Planetary Science Inst. Tucson, AZ, United States)
Pieters, Carle M.
(Brown Univ. Providence, RI, United States)
Solomon, Sean C.
(Columbia Univ. Palisades, NY, United States)
Johnson, Catherine L.
(British Columbia Univ. Vancouver, British Columbia, Canada)
Winslow, Reka M..
(British Columbia Univ. Vancouver, British Columbia, Canada)
Helbert, Jorn
(Deutsches Zentrum fuer Luft- und Raumfahrt e.V. Berlin, Germany)
Peplowski, Patrick N.
(Johns Hopkins Univ. Laurel, MD, United States)
Weider, Shoshana Z.
(Carnegie Institution of Washington Washington, DC, United States)
Mouawad, Nelly
(Lebanese American Univ Beirut, Lebanon)
Izenberg, Noam R.
(Johns Hopkins Univ. Laurel, MD, United States)
McClintock, William E.
(Colorado Univ. Boulder, CO, United States)
Date Acquired
May 28, 2015
Publication Date
April 24, 2014
Publication Information
Publication: Space Science Reviews
Publisher: Springer
Volume: 181
Issue: 4-Jan
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
GSFC-E-DAA-TN16346
Funding Number(s)
CONTRACT_GRANT: NNX07AR78G
CONTRACT_GRANT: NNG11PL02A
CONTRACT_GRANT: NNX08AN29G
CONTRACT_GRANT: NNX07AR61G
CONTRACT_GRANT: NNG06EO90A
CONTRACT_GRANT: NAS5-97271
CONTRACT_GRANT: NNX07AR62G
CONTRACT_GRANT: NASW-00002
Distribution Limits
Public
Copyright
Public Use Permitted.
Keywords
Weathering
Bedrock
Mercury
No Preview Available