NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model ProductsSince the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.
Document ID
20140006651
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Nabat, P.
(Centre National de Recherches Meteorologiques Toulouse, France)
Somot, S.
(Centre National de Recherches Meteorologiques Toulouse, France)
Mallet, M.
(Laboratoire d'Aerologie Toulouse, France)
Chiapello, I
(Lille-1 Univ. Villeneuve-d'Asoq, France)
Morcrette, J. J.
(European Centre for Medium-Range Weather Forecasts Reading, United Kingdom)
Solomon, F.
(Abdus Salam International Centre for Theoretical Physics Trieste, Italy)
Szopa, S.
(Centre National de la Recherche Scientifique Gif-sur-Yvette, France)
Dulac, F
(Centre National de la Recherche Scientifique Gif-sur-Yvette, France)
Collins, W.
(Reading Univ. United Kingdom)
Ghan, S.
(Pacific Northwest National Lab. Richland, WA, United States)
Horowitz, L. W.
(National Oceanic and Atmospheric Administration Princeton, NJ, United States)
Lamarque, J. F.
(National Center for Atmospheric Research Boulder, CO, United States)
Lee, Y. H.
(Columbia Univ. New York, NY, United States)
Naik, V.
(National Oceanic and Atmospheric Administration Princeton, NJ, United States)
Nagashima, T.
(National Inst. for Environmental Studies Tsukuba, Japan)
Shindell, D.
(NASA Goddard Inst. for Space Studies New York, NY, United States)
Skeie, R.
(Center for International Climate and Environmental Research Oslo, Norway)
Date Acquired
June 3, 2014
Publication Date
May 17, 2013
Publication Information
Publication: Atmospheric Measurement Techniques
Publisher: Copernicus
Volume: 6
Issue: 5
Subject Category
Meteorology And Climatology
Earth Resources And Remote Sensing
Report/Patent Number
GSFC-E-DAA-TN9668
Funding Number(s)
CONTRACT_GRANT: FNRA ANR-11-BS56-0006
WBS: WBS 509496.02.08.04.24
CONTRACT_GRANT: EC FP7-ENV-2010-265192
CONTRACT_GRANT: NNX10AU63A
Distribution Limits
Public
Copyright
Public Use Permitted.
Keywords
troposphere
sulfates
aerosols
No Preview Available