NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Radiation Protection Using Carbon Nanotube DerivativesBHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.
Document ID
20100033603
Acquisition Source
Johnson Space Center
Document Type
Other - NASA Tech Brief
Authors
Conyers, Jodie L., Jr.
(Texas Univ. Houston, TX, United States)
Moore, Valerie C.
(Texas Univ. Houston, TX, United States)
Casscells, S. Ward
(Texas Univ. Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
September 1, 2010
Publication Information
Publication: NASA Tech Briefs, September 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MSC-24565-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available