NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
FTIR instrumentation to monitor vapors from Shuttle tile waterproofing materialsThe Space Shuttle Thermal Protection System (TPS) tiles and blankets are waterproofed using DimethylEthoxySilane (DMEX) in the Orbiter Processing Facilities (OPF). DMES has a Threshold Limit Value (TLV) for exposure of personnel to vapor concentration in air of 0.5 ppm. The OPF high bay cannot be opened for normal work after a waterproofing operation until the DMES concentration is verified by measurement to be below the TLV. On several occasions the high bay has been kept closed for up to 8 hours following waterproofing operations due to high DMES measurements. In addition, the Miran 203 and Miran 1 BX infrared analyzers calibrated at different wavelengths gave different readings under the same conditions. There was reason to believe that some of the high DMES concentration readings were caused by interference form water and ethanol vapors. The Toxic Vapor Detection Laboratory (TVDL) was asked to test the existing DMES instruments and identify the best qualified instrument. In addition the TVDL was requested to develop instrumentation to ensure the OPF high bay could be opened safely as soon as possible after a waterproofing operation. A Fourier Transform Infrared (FTIR) spectrophotometer instrument developed for an earlier project was reprogrammed to measure DMES vapor along with ethanol, water, and several common solvent vapors. The FTIR was then used to perform a series of laboratory and field tests to evaluate the performance of the single wavelength IR instruments in use. The results demonstrated that the single wavelength IR instruments did respond to ethanol and water vapors, more or less depending on the analytical IR wavelength selected. The FTIR was able to separate the responses to DMES, water and ethanol, and give consistent readings for the DMES vapor concentration. The FTIR was then deployed to the OPF to monitor real waterproofing operations. The FTIR was also used to measure the time for DMES to evaporate from TPS tile under a range of humidity conditions in controlled laboratory tests. The combination of laboratory and field tests with the FTIR instrument demonstrated superior sensitivity, ability to reject interference from water and ethanol vapors, ruggedness to be transported from the lab to the OPF and set up without special procedures or degradation of performance. The multiple component vapor analysis algorithm was developed at KSC and incorporates automatic baseline correction and shape fitting of the spectra. The analysis for DMES, TetraMethylDiSiloxane (TMDS), ethanol, methanol, isopropanol, and baseline parameters uses 161 points per sample at 4 cm(exp -1) resolution, and processes an eight scan sample every ten seconds. The standard deviation of the measurements is 0.013 ppm and the upper linear limit is 125 ppm DMES. Based on successful demonstration of capabilities we produced three mobile instrument carts to be used in each OPF to support future waterproofing operations. The design and building of the 'DMES Carts' were accomplished in Fiscal year 1995.
Document ID
19960010180
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Mattson, C. B.
(I-NET, Inc. Cocoa Beach, FL, United States)
Schwindt, C. J.
(I-NET, Inc. Cocoa Beach, FL, United States)
Date Acquired
September 6, 2013
Publication Date
November 28, 1995
Subject Category
Instrumentation And Photography
Report/Patent Number
NAS 1.26:199959
NASA-CR-199959
NIPS-96-07025
Accession Number
96N17346
Funding Number(s)
CONTRACT_GRANT: NAS10-11943
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available