NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Conservation equations and physical models for hypersonic air flows over the aeroassist flight experiment vehicleThe code development and application program for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), with emphasis directed toward support of the Aeroassist Flight Experiment (AFE) in the near term and Aeroassisted Space Transfer Vehicle (ASTV) design in the long term is reviewed. LAURA is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3-D, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. A single relaxation step depends only on information from nearest neighbors. Predictions for pressure distributions, surface heating, and aerodynamic coefficients compare well with experimental data for Mach 10 flow over an AFE wind tunnel model. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium over the full scale AFE configuration obtained on a multi-domain grid are discussed.
Document ID
19910001584
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Gnoffo, Peter A.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
September 6, 2013
Publication Date
September 1, 1989
Publication Information
Publication: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12
Subject Category
Aerodynamics
Accession Number
91N10897
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available