NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Computational fluid dynamics analysis of space shuttle main propulsion feed line 17-inch disconnect valvesA steady incompressible three-dimensional (3-D) viscous flow analysis was conducted for the Space Shuttle Main Propulsion External Tank (ET)/Orbiter (ORB) propellant feed line quick separable 17-inch disconnect flapper valves for liquid oxygen (LO2) and liquid hydrogen (LH2). The main objectives of the analysis were to predict and correlate the hydrodynamic stability of the flappers and pressure drop with available water test data. Computational Fluid Dynamics (CFD) computer codes were procured at no cost from the public domain, and were modified and extended to carry out the disconnect flow analysis. The grid generator codes SVTGD3D and INGRID were obtained. NASA Ames Research Center supplied the flow solution code INS3D, and the color graphics code PLOT3D. A driver routine was developed to automate the grid generation process. Components such as pipes, elbows, and flappers can be generated with simple commands, and flapper angles can be varied easily. The flow solver INS3D code was modified to treat interior flappers, and other interfacing routines were developed, which include a turbulence model, a force/moment routine, a time-step routine, and initial and boundary conditions. In particular, an under-relaxation scheme was implemented to enhance the solution stability. Major physical assumptions and simplifications made in the analysis include the neglect of linkages, slightly reduced flapper diameter, and smooth solid surfaces. A grid size of 54 x 21 x 25 was employed for both the LO2 and LH2 units. Mixing length theory applied to turbulent shear flow in pipes formed the basis for the simple turbulence model. Results of the analysis are presented for LO2 and LH2 disconnects.
Document ID
19910001563
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Kandula, Max
(Lockheed Engineering and Sciences Co. Houston, TX, United States)
Pearce, Daniel
(Lockheed Engineering and Sciences Co. Houston, TX, United States)
Date Acquired
September 6, 2013
Publication Date
September 1, 1989
Publication Information
Publication: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12
Subject Category
Aerodynamics
Accession Number
91N10876
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available