Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Time-dependent models of single- and double-layer mantle convection

Abstract

One outstanding problem of great geophysical importance is the vertical extent of convection in the Earth's mantle1. Steady-state models of convection in the mantle have yet to produce a description of the mantle which is consistent with geochemical and geophysical observations. Here we present time-dependent numerical models of two-dimensional convection which simulate mantle convection. Starting from a fluid initially at rest with a purely conductive temperature profile, we now find that for a Rayleigh number (Ra) of 107, the model experiences a transient period of double-layer convection, which lasts on the order of hundreds of millions of years when scaled to the Earth's mantle. It is suggested that transient periods of double-layer convection in the Earth's mantle may have existed in the past, whether or not such a period exists today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schubert, G. A. Rev. Earth planet. Sci. 7, 289–342 (1979).

    Article  ADS  Google Scholar 

  2. Davies, G. F. Geophys. J. R. astr. Soc. 49, 459–486 (1977).

    Article  ADS  Google Scholar 

  3. Elsasser, W. M., Olson, P. & Marsh, B. D. J. geophys. Res. 84, 147–155 (1979).

    Article  ADS  Google Scholar 

  4. Jeanloz, R. & Richter, F. M. J. geophys. Res. 84, 5497–5504 (1979).

    Article  ADS  Google Scholar 

  5. Olson, P. J. geophys. Res. 86, 4881–4890 (1981).

    Article  ADS  Google Scholar 

  6. Richter, F. M. & McKenzie, D. P. J. geophys. Res. 86, 6133–6142 (1981).

    Article  ADS  Google Scholar 

  7. Schubert, G. & Spohn, T. Geophys. Res. Lett. 8, 951–954 (1981).

    Article  ADS  Google Scholar 

  8. Fowler, A. C. Geophys. Res. Lett. 9, 816–819 (1982).

    Article  ADS  Google Scholar 

  9. Kenyon, P. M. & Turcotte, D. L. J. geophys. Res. (submitted).

  10. Spohn, T. & Schubert, G. J. geophys. Res. 87, 4682–4696 (1982).

    Article  ADS  Google Scholar 

  11. Hofmann, A. W., White, W. M. & Whitford, D. J. Carnegie Instn Wash. Yb. 77, 548–562 (1978).

    Google Scholar 

  12. DePaolo, D. J. Nature 291, 193–196 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Jacobsen, S. B. & Wasserburg, G. J. Tectonophysics 75, 163–179 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Allegre, C. J. Tectonophysics 81, 109–132 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Christensen, U. Geophys. J. R. astr. Soc. 68, 487–497 (1982).

    Article  ADS  Google Scholar 

  16. Olson, P. & Yuen, D. A. J. geophys. Res. 87, 3993–4002 (1982).

    Article  ADS  Google Scholar 

  17. Richter, F. M. & McKenzie, D. P. J. geophys. Res. 86, 6133–6142 (1981).

    Article  ADS  Google Scholar 

  18. Peltier, W. R. A. Rev. Earth planet. Sci. 9, 199–225 (1981).

    Article  ADS  Google Scholar 

  19. Andrews, D. J. J. geophys. Res. 77, 6470–6481 (1972).

    Article  ADS  Google Scholar 

  20. Young, R. E. J. Fluid Mech. 63, 695–721 (1974).

    Article  ADS  Google Scholar 

  21. McKenzie, D. P., Roberts, J. M. & Weiss, N. O. J. Fluid Mech. 62, 465–538 (1974).

    Article  ADS  Google Scholar 

  22. Schubert, G. & Young, R. E. Tectonophysics 35, 201–214 (1976).

    Article  ADS  Google Scholar 

  23. Daly, S. F. Geophys. J. R. astr. Soc. 61, 519–547 (1980).

    Article  ADS  Google Scholar 

  24. Arkani-Hamed, J., Toksoz, M. N. & Hsui, A. T. Tectonophysics 75, 19–30 (1981).

    Article  ADS  Google Scholar 

  25. Houseman, G. & McKenzie, D. P. Geophys. J. R. astr. Soc. 68, 133–164 (1982).

    Article  ADS  Google Scholar 

  26. Boss, A. P. & Sacks, I. S. Carnegie Instn Wash. Yb. 81, 543–550 (1982).

    Google Scholar 

  27. Lux, R. A. & Sacks, I. S. Carnegie Instn Wash. Yb. 79, 512–520 (1980).

    Google Scholar 

  28. Torrance, K. E. & Turcotte, D. L. J. Fluid Mech. 47, 113–125 (1971).

    Article  ADS  Google Scholar 

  29. Schubert, G., Cassen, P. & Young, R. E. Phys. Earth planet. Interiors 20, 194–208 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Stevenson, D. J. Science 214, 611–619 (1981).

    Article  ADS  CAS  Google Scholar 

  31. Basaltic Volcanism Study Project. Basaltic Volcanism on the Terrestrial Planets, 1163 (LPI, Houston, Texas, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boss, A., Sacks, I. Time-dependent models of single- and double-layer mantle convection. Nature 308, 533–535 (1984). https://doi.org/10.1038/308533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308533a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing