Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lithium reversibly inhibits microtubule-based motility in sperm flagella

Abstract

The sliding-tubule hypothesis of flagellar movement has strong experimental support1, but our present knowledge of the mechanism by which this sliding is coordinated and converted into flagellar oscillation and bend propagation is quite limited. Among the few facts known are: (1) calcium has a role in regulating the asymmetry of flagellar waveform2,3, (2) the initiation or activation of motility in spermatozoa from several species involves a cyclic AMP-depen-dent phosphorylation reaction4–7, and (3) the conversion of tubule sliding to bending does not require the radial spokes or central tubules8,9. Inhibitors are valuable tools for investigating mechanisms involved in cellular function, and we report here that Li+ in low concentrations reversibly inhibits the microtubule-based move ment of reactivated sea urchin sperm flagella. The evidence indi cates that the action of Li+is directed primarily towards one or more regulatory sites through which Ca2+ modulates the asymmetry of flagellar waveform, rather than towards dynein ATPase itself. Lithium also appears to inhibit the sperm adenylate cyclase, but this action does not seem to be relevant to its inhibition of normal motility. Our findings indicate the need for considerable caution when using ATP analogues supplied as the Li+salt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gibbons, I. R. J. Cell Biol. 91, 107s–124s (1981).

    Article  CAS  Google Scholar 

  2. Brokaw, C. J. J. Cell Biol. 82, 401–411 (1979).

    Article  CAS  Google Scholar 

  3. Gibbons, B. H. & Gibbons, I. R. J. Cell Biol. 84, 13–27 (1980).

    Article  CAS  Google Scholar 

  4. Garbers, D. L. & Kopf, G. S. Adv. Cyclic Nucleotide Res. 13, 251–306 (1980).

    CAS  PubMed  Google Scholar 

  5. Ishiguro, K., Murofushi, H. & Sakai, H. J. Cell Biol. 92, 777–782 (1982).

    Article  CAS  Google Scholar 

  6. Tash, J. S. & Means, A. R. Biol. Reprod. 28, 75–104 (1983).

    Article  CAS  Google Scholar 

  7. Opresko, L. K. & Brokaw, C. J. Gamete Res. 8, 201–218 (1983).

    Article  CAS  Google Scholar 

  8. Brokaw, C. J., Luck, D. J. L. & Huang, B. J. Cell Biol. 92, 722–732 (1982).

    Article  CAS  Google Scholar 

  9. Gibbons, B. H., Gibbons, I. R. & Baccetti, B. J. submicrosc. Cytol. 15, 15–20 (1983).

    CAS  PubMed  Google Scholar 

  10. Okuno, M. & Brokaw, C. J. J. Cell Sci. 38, 105–123 (1979).

    CAS  PubMed  Google Scholar 

  11. Gibbons, B. H. J. Cell Biol. 84, 1–12 (1980).

    Article  CAS  Google Scholar 

  12. Brokaw, C. J. & Gibbons, I. R. in Swimming and Flying in Nature Vol. 1 (eds Wu, T. Y.-T., Brokaw, C. J. & Brennan, C.) 89–126 (Plenum, New York, 1975).

    Google Scholar 

  13. Wolff, J., Berens, S. C. & Jones, A. B. Biochem. biophys. Res. Commun. 39, 77–82 (1970).

    Article  CAS  Google Scholar 

  14. Thams, P. & Geisler, A. Acta pharmac. tox. 48, 397–403 (1981).

    Article  CAS  Google Scholar 

  15. Gibbons, B. H. & Gibbons, I. R. J. Cell Biol. 63, 970–985 (1974).

    Article  CAS  Google Scholar 

  16. Gibbons, B. H. & Gibbons, I. R. J. Cell Biol. 54, 75–97 (1972).

    Article  CAS  Google Scholar 

  17. Brokaw, C. J. J. exp. Biol. 71, 229–240 (1977).

    CAS  PubMed  Google Scholar 

  18. Goldstein, S. F. J. Cell Biol. 80, 61–68 (1979).

    Article  CAS  Google Scholar 

  19. Sillen, L. G. & Martell, A. E. in Stability Constants of Metal–Ion Complexes Suppl. 1 (The Chemical Society, London, 1971).

    Google Scholar 

  20. Frausto da Silva, J. J. R. & Williams, R. J. P. Nature 263, 237–239 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Okuno, M. & Brokaw, C. J. Cell Motility 1, 349–362 (1981).

    Article  CAS  Google Scholar 

  22. Gibbons, I. R., Evans, J. A. & Gibbons, B. H. Cell Motility Suppl. 1, 181–184 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbons, B., Gibbons, I. Lithium reversibly inhibits microtubule-based motility in sperm flagella. Nature 309, 560–562 (1984). https://doi.org/10.1038/309560a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309560a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing