Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in retina

Abstract

Neurofilaments (NFs) consist of three protein subunits with apparent molecular weights of 68,000 (68K), 145K and 200K, which are found closely associated in most but not all locations in the nervous system1–4. One of these exceptions is the inner retina of the mouse, where antibodies to 145K NFs label large ganglion cells throughout the extent of the cells, while antibodies to 200K NFs label only more distal portions of the optic axons but usually fail to label the ganglion cell somata and proximal axons5,6. Very rarely, however, and more often in old mice, anti-200K NF antibodies do label a ganglion cell completely5. To determine whether these rare, completely labelled cells reflect a pathological alteration, we cut the optic axons, and report here that after a few days some of the axotomized cells could be labelled completely, in a Golgi-like fashion, by anti-200K NF antibodies. These cells seem to represent the population that forms the projection to the bulk of the lateral geniculate nucleus, as suggested by their size, distribution and projection pattern. Hence, antibodies to the heavy NF subunit in combination with lesions may allow selective retrograde tracing of a subpopulation of ganglion cells, and such antibodies can be used to detect damage in NF-rich neurones at a very early stage, long before they eventually degenerate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoffman, P. & Lasek, R. J. J. Cell Biol. 66, 351–366 (1975).

    Article  CAS  Google Scholar 

  2. Willard, M. & Simon, C. J. Cell Biol. 89, 198–205 (1981).

    Article  CAS  Google Scholar 

  3. Sharp, G. A., Shaw, G. & Weber, K. Expl Cell Res. 137, 403–413 (1982).

    Article  CAS  Google Scholar 

  4. Shaw, G. & Weber, K. Nature 298, 277–279 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Dräger, U. C., Edwards, D. L. & Barnstable, C. J. J. Neurosci. (in the press).

  6. Dräger, U. C., Edwards, D. L. & Kleinschmidt, J. J. Proc. natn. Acad. Sci. U.S.A. 80, 6408–6412 (1983).

    Article  ADS  Google Scholar 

  7. Lieberman, A. R. Int. Rev. Neurobiol. 14, 49–124 (1971).

    Article  CAS  Google Scholar 

  8. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (ed. May, R. M.) (Oxford University Press, 1928).

    Google Scholar 

  9. Stone, J. J. comp. Neurol. 126, 585–600 (1966).

    CAS  PubMed  Google Scholar 

  10. Grafstein, B. & Ingoglia, N. A. Expl Neurol. 76, 318–330 (1982).

    Article  CAS  Google Scholar 

  11. Moss, T. H. & Lewkowicz, S. J. J. neurol. Sci. 60, 267–280 (1983).

    Article  CAS  Google Scholar 

  12. Dräger, U. C. & Olsen, J. F. J. comp. Neurol. 191, 383–412 (1980).

    Article  Google Scholar 

  13. Goldberg, S. & Galin, M. A. Invest. Ophthal. vis. Sci. 12, 383–385 (1973).

    Google Scholar 

  14. Gambetti, P., Autilio-Gambetti, L. & Papasozomenos, S. C. Science 213, 1521–1522 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Dräger, U. C. & Hubel, D. H. J. Neurophysiol. 38, 690–713 (1975).

    Article  Google Scholar 

  16. Dräger, U. C. & Hubel, D. H. J. Neurophysiol. 39, 91–101 (1976).

    Article  Google Scholar 

  17. Dräger, U. C. J. comp. Neurol. 160, 269–290 (1975).

    Article  Google Scholar 

  18. Lund, R. D., Lund, J. S. & Wise, R. P. J. comp. Neurol. 158, 383–404 (1974).

    Article  CAS  Google Scholar 

  19. Bunt, S. M., Lund, R. D. & Land, P. W. Devl Brain Res. 6, 149–168 (1983).

    Article  Google Scholar 

  20. Sternberger, L. A. & Sternberger, N. H. Proc. natn. Acad. Sci. U.S.A. 80, 6126–6130 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Anderton, B. H. et al. Nature 298, 84–86 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Sternberger, L. A., Harwell, L. W. & Sternberger, N. H. Proc. natn. Acad. Sci. U.S.A. 79, 1326–1330 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Lee, V., Wu, H. L. & Schlaepfer, W. W. Proc. natn. Acad. Sci. U.S.A. 79, 6089–6092 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Dräger, U. C. Nature 303, 169–172 (1983).

    Article  ADS  Google Scholar 

  25. Ogden, T. E. Wenner-Gren int. Symp. Ser. 10, 89–111 (1966).

    Google Scholar 

  26. Hofbauer, A. & Dräger, U. C. Invest. Ophthal. vis. Sci. 20, (Suppl.) 175 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dräger, U., Hofbauer, A. Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in retina. Nature 309, 624–626 (1984). https://doi.org/10.1038/309624a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309624a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing