Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli

Abstract

Sporulation of Bacillus subtilis involves sequential morphological and biochemical changes and is regulated by specific genes (spo genes) estimated to occupy more than 30 loci1,2. A mutation in any one of these genes blocks the sporulation process at the corresponding developmental stage. Despite intensive genetic studies, the nature and function of the spo gene products remain unknown. Vegetative B. subtilis RNA polymerase core enzyme may interact with several sigma factors and discriminate among different classes of promoters3. During sporulation, new polypeptides are associated with the core enzyme which may have a central role in modifying its promoter recognition specificity3,4. As a first step to understanding their function in the switch from vegetative to sporulation mode, several early sporulation genes have been cloned and analysed5–7. Here we report the cloning and nucleotide sequence of the spoIIG gene of B. subtilis8,9. This gene encodes a polypeptide with a predicted relative molecular mass of 27,652 which contains a 65-amino acid region highly homologous to an internal part of the Escherichia coli sigma factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Piggot, P. J. & Coote, J. G. Bact. Rev. 40, 908–962 (1976).

    CAS  PubMed  Google Scholar 

  2. Henner, D. J. & Hoch, J. A. Microbiol. Rev. 44, 57–82 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Losick, R. & Pero, J. Cell 25, 582–584 (1981).

    Article  CAS  Google Scholar 

  4. Fukuda, R. & Doi, R. H. J. Bact. 129, 422–432 (1977).

    CAS  PubMed  Google Scholar 

  5. Shimotsu, H., Kawamura, F., Kobayashi, Y. & Saito, H. Proc. natn. Acad. Sci. U.S.A. 80, 658–662 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Ramakrishna, N., Dubnau, E. & Smith, I. Nucleic Acids Res. 12, 1779–1790 (1984).

    Article  CAS  Google Scholar 

  7. Bouvier, J., Stragier, P., Bonamy, C. & Szulmajster, J. Proc. natn. Acad. Sci. U.S.A. (in the press).

  8. Young, M. J. Bact. 126, 928–936 (1976).

    CAS  PubMed  Google Scholar 

  9. Ayaki, H. & Kobayashi, Y. J. Bact. 158, 507–512 (1984).

    CAS  PubMed  Google Scholar 

  10. Bonamy, C. & Szulmajster, J. Molec. gen. Genet. 180, 57–65 (1982).

    Google Scholar 

  11. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  12. McLaughlin, J. R., Murray, C. L. & Rabinowitz, J. C. J. biol. Chem. 256, 11283–11291 (1981).

    CAS  PubMed  Google Scholar 

  13. Burton, Z. et al. Nucleic Acids Res. 9, 2889–2903 (1981).

    Article  CAS  Google Scholar 

  14. Schwartz, R. M. & Dayhoff, M. O. Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.)353–358 (National Biomedical Research Foundation, Washington, D. C., 1978).

    Google Scholar 

  15. Needleman, S. B. & Wunch, C. D. J. molec. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  16. Smith, T. F., Waterman, M. S. & Fitch, W. M. J. molec. Evol. 18, 38–46 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Nichols, B. P., Van Cleemput, M. & Yanosfsky, C. J. molec. Biol. 146, 45–54 (1981).

    Article  CAS  Google Scholar 

  18. Band, L., Shimotsu, H. & Henner, D. J. Gene 27, 55–65 (1984).

    Article  CAS  Google Scholar 

  19. Losick, R., Shorenstein, R. G. & Sonenshein, A. L. Nature 227, 910–913 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Shorenstein, R. G. & Losick, R. J. biol. Chem. 248, 6170–6173 (1973).

    CAS  PubMed  Google Scholar 

  21. Achbeyer, E. C. & Whiteley, H. R. J. biol. Chem. 255, 11957–11964 (1980).

    Google Scholar 

  22. Wong, S. L. & Doi, R. H. J. biol. Chem. 257, 11932–11936 (1982).

    CAS  PubMed  Google Scholar 

  23. Haldenwang, W. G., Lang, N. & Losick, R. Cell 23, 615–624 (1981).

    Article  CAS  Google Scholar 

  24. Linn, T., Greenleaf, A. L. & Losick, R. J. biol. Chem. 250, 9256–9261 (1975).

    CAS  PubMed  Google Scholar 

  25. Ehrlich, S. D. Proc. natn. Acad. Sci. U.S.A. 75, 1433–1436 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  27. Landick, R. et al. Cell 38, 175–182 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stragier, P., Bouvier, J., Bonamy, C. et al. A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. Nature 312, 376–378 (1984). https://doi.org/10.1038/312376a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312376a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing