Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thickness of ice on perennially frozen lakes

Abstract

The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties1–3. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent1, ranging from 3.5 to 6m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice–water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr−1, which can explain the observed ice thickness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parker, B. C. et al. J. Plankton Res. 4, 271–286 (1982).

    Article  Google Scholar 

  2. Wilson, A. T. & Wellman, H. W. Nature 196, 1171–1173 (1962).

    Article  ADS  Google Scholar 

  3. Heywood, R. B. Antarctic Freshwater Ecosystems: Review and Synthesis (3rd SCAR symposium, Gulf, Houston, 1977).

    Google Scholar 

  4. Shaw, J. B. Arctic 18, 123–132 (1965).

    Article  Google Scholar 

  5. Baker, D. J. Jr., Radok, U. & Weller, G. Rev. Geophys. Space Phys. 18, 525–543 (1980).

    Article  Google Scholar 

  6. Barnes, D. F. Air force surveys in geophysics No. 129 (US Air Force, Cambridge, 1960).

    Google Scholar 

  7. Wilson, A. T. Tuatara 15, 152–164 (1967).

    Google Scholar 

  8. Ragotzkie, R. A. & Likens, G. E. Limnol. Oceanogr. 9, 412–425 (1964).

    Article  ADS  Google Scholar 

  9. Henderson, R. A. et al. J. Glaciol. 6, 129–133 (1965).

    Article  Google Scholar 

  10. Lyon, G. L. N.Z. J. Geol. Geophys. 22, 281–284 (1979).

    Article  Google Scholar 

  11. Campbell, G. S. An Introduction to Environment Biophysics (Springer, New York, 1977).

    Book  Google Scholar 

  12. Wallace, D. & Sagan, C. Icarus 39, 385–400 (1979).

    Article  ADS  Google Scholar 

  13. Thompson, D. C., Bromley, A. M. & Craig, R. M. F. N.Z. J. Geol. Geophys. 14, 477–483 (1971).

    Article  Google Scholar 

  14. Thompson, D. C. & MacDonald, W. J. P. Bull. N.Z. Dep. Sci. Ind. Res. 140, 37–56 (1961).

    Google Scholar 

  15. Goldman, C. R., Mason, D. T. & Hobbie, J. E. Limnol. Oceanogr. 12, 295–310 (1967).

    Article  ADS  Google Scholar 

  16. Squyres, S. W. & Veverka, J. Icarus 50, 115–122 (1982).

    Article  ADS  Google Scholar 

  17. Wharton, R. A. Jr., Parker, B. C. & Simmons, G. M. Jr., Phycologia 22, 355–365 (1983).

    Article  Google Scholar 

  18. Wetzel, R. G. Limnology (Saunders, New York, 1983).

    Google Scholar 

  19. Decker, E. R. & Bucher, G. J. Antarctic J. U.S. 12, 102–104 (1977).

    Google Scholar 

  20. Shirtcliffe, T. G. L. J. geophys. Res. 69, 5257–5286 (1964).

    Article  ADS  Google Scholar 

  21. Bell, R. A. I. N. Z. Jl Geol. Geophys. 10, 540–546 (1967).

    Article  Google Scholar 

  22. Bull, C. Antarctic Res. Ser. 9, 177–194 (1966).

    Google Scholar 

  23. Parker, B. C. & Wharton, R. A. Jr. Arch. Hydrobiol. (in the press).

  24. Calkin, P. E. & Bull, C. J. Glaciol. 6, 833–836 (1967).

    Article  ADS  Google Scholar 

  25. Lucchitta, B. K. & Ferguson, H. M. J. geophys. Res. Suppl. 88, A553–A568 (1983).

    Article  ADS  Google Scholar 

  26. Carr, M. H. Icarus 56, 476–495 (1983).

    Article  ADS  Google Scholar 

  27. Kieffer, H. H. et al. J. geophys. Res. 82, 4249–4291 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Carr, M. H. J. geophys. Res. 84, 2995–3007 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKay, C., Clow, G., Wharton, R. et al. Thickness of ice on perennially frozen lakes. Nature 313, 561–562 (1985). https://doi.org/10.1038/313561a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313561a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing