Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The synthesis and in vivo assembly of functional antibodies in yeast

Abstract

The yeast Saccharomyces cerevisiae can synthesize, process and secrete higher eukaryotic proteins1–5. We have investigated the expression of immunoglobulin chains in yeast and demonstrate here (1) the synthesis, processing and secretion of light and heavy chains, (2) the glycosylation of heavy chain, (3) the intracellular localization of these foreign proteins by immunofluorescence, and (4) the detection of functional antibodies in cells co-expressing both chains. This may provide the basis of a microbial fermentation process for the production of monoclonal antibodies. The co-expression of light and heavy chains in Escherichia coli has been reported but functional antibodies were not assembled in vivo6,7. Furthermore, only low-level assembly of these chains was found in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hitzeman, R. A. et al. Science 219, 620–625 (1983).

    Article  CAS  ADS  Google Scholar 

  2. Rothstein, S. J., Lazarus, C. M., Smith, W. E., Baulcombe, D. C. & Gatenby, A. A. Nature 308, 662–665 (1984).

    Article  CAS  ADS  Google Scholar 

  3. Valanzuela, P., Medina, A., Rutter, W. J., Ammerer, G. & Hall, B. D. Nature 298, 347–350 (1982).

    Article  ADS  Google Scholar 

  4. Hitzeman, R. A. et al. Nucleic Acids Res. 11, 2745–2763 (1983).

    Article  CAS  Google Scholar 

  5. Brake, A. J. et al. Proc. natn. Acad. Sci. U.S.A. 81, 4642–4646 (1984).

    Article  CAS  ADS  Google Scholar 

  6. Boss, M. A., Kenten, J. H., Wood, C. R. & Emtage, J. S. Nucleic Acids Res. 12, 3791–3806 (1984).

    Article  CAS  Google Scholar 

  7. Cabilly, S. et al. Proc. natn. Acad. Sci. U.S.A. 81, 3273–3277 (1984).

    Article  CAS  ADS  Google Scholar 

  8. Bothwell, A. L. M. et al. Cell 24, 625–637 (1981).

    Article  CAS  Google Scholar 

  9. Bothwell, A. L. M. et al. Nature 298, 380–382 (1982).

    Article  CAS  ADS  Google Scholar 

  10. Mellor, J. et al. Gene 24, 1–14 (1983).

    Article  CAS  Google Scholar 

  11. Gritz, L. & Davies, J. Gene 25, 179–188 (1983).

    Article  CAS  Google Scholar 

  12. Mahoney, W. C. & Duskin, D. J. biol. Chem. 254, 6572–6576 (1979).

    CAS  PubMed  Google Scholar 

  13. Edge, A. S. B., Faltynek, C. R., Hof, L., Reichert, L. E. & Weber, P. Analyt. Biochem. 118, 131–137 (1981).

    Article  CAS  Google Scholar 

  14. Chapman, A. & Kornfeld, R. J. biol. Chem. 254, 816–823 (1979).

    CAS  PubMed  Google Scholar 

  15. Ballou, C. E. in The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression (eds Strathern, J. et al.) 335–360 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  16. Schwencke, J. Physiol. Vég. 15, 491 (1977).

    CAS  Google Scholar 

  17. Matile, P. A. Rev. Pl. Physiol. 29, 193 (1978).

    Article  CAS  Google Scholar 

  18. Schekman, R. & Novick, P. in The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression (eds Strathern, J. et al.) 361–398 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  19. Stevens, T., Esmon, B. & Schekman, R. Cell 30, 439–448 (1982).

    Article  CAS  Google Scholar 

  20. Lin, C.-J., Chopra, A. K., Strnadova, M. & Chaloupka, J. FEMS Microbiol. Lett. 21, 313–317 (1984).

    Article  Google Scholar 

  21. Imanishi, T. & Makela, O. Eur. J. Immun. 3, 323–330 (1973).

    Article  CAS  Google Scholar 

  22. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  23. Patel, T. P. et al. Nucleic Acids Res. 10, 5605–5620 (1982).

    Article  CAS  Google Scholar 

  24. Emtage, J. S. et al. Proc. natn. Acad. Sci. U.S.A. 80, 3671–3675 (1983).

    Article  CAS  ADS  Google Scholar 

  25. Wood, C. R., Boss, M. A., Patel, T. P. & Emtage, J. S. Nucleic Acids Res. 12, 3937–3950 (1984).

    Article  CAS  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  ADS  Google Scholar 

  27. Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 302–321 (1981).

    Article  Google Scholar 

  28. Beggs, J. Nature 275, 104–109 (1978).

    Article  CAS  ADS  Google Scholar 

  29. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  CAS  ADS  Google Scholar 

  30. Burnette, W. N. Analyt. Biochem. 112, 195–203 (1981).

    Article  CAS  Google Scholar 

  31. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  CAS  ADS  Google Scholar 

  32. Onishi, H. R., Tkacz, J. S. & Lampen, J. O. J. biol. Chem. 254, 11943–11952 (1979).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, C., Boss, M., Kenten, J. et al. The synthesis and in vivo assembly of functional antibodies in yeast. Nature 314, 446–449 (1985). https://doi.org/10.1038/314446a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314446a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing