Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biogenic fluxes of carbon and oxygen in the ocean

Abstract

Rates of oxygen utilization (OUR) at depth in the ocean have been interpreted as showing that rates of carbon fixation by phytoplankton, as estimated by 14CO2 assimilation in vitro, must be in error1. The oxygen is consumed in the decomposition of organic matter sinking from the photic zone: there is a stoichiometrically equivalent flux of nitrate from the deep water towards the surface2. For comparison with the 14C data, it is conventional to extrapolate OUR to total equivalent phytoplankton production through a constant factor f, the ratio of nitrate based production (Pnew) to total production (Pt) as defined by Dugdale and Goering3. The alternative hypothesis, that scaling up OUR by a constant factor f is inappropriate, has not been examined in detail. We show here that f is variable in space and time for most provinces of the ocean. Furthermore, we show that in nitrogen-limited systems, such as the pelagic of the open ocean, Pt and f should be positively correlated. Applying these results to data from the Sargasso Sea, we find that the carbon fluxes estimated by 14C assimilation are consistent with the oxygen fluxes estimated by OUR. The conclusion is of profound importance for understanding the major biogeochemical cycles of the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jenkins, W. J. J. mar. Res. 40, 265–290 (1982).

    Google Scholar 

  2. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  3. Dugdale, R. C. & Goering, J. J. Limnol. Oceanogr. 12, 196–206 (1967).

    Article  ADS  CAS  Google Scholar 

  4. Shulenberger, E. & Reid, J. L. Deep-Sea Res. 28, 901–919 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Jenkins, W. J. & Goldman, J. C. J. mar. Res. 43, 465–491 (1985).

    Article  CAS  Google Scholar 

  6. Platt, T. Deep-Sea Res. 31, 1311–1319 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Platt, T., Lewis, M. & Geider, R. in Flows of Energy and Materials in Marine Ecosystems (ed. Fasham, M. J. R.) 49–84 (Plenum, New York, 1984).

    Book  Google Scholar 

  8. Menzel, D. W. & Ryther, J. H. Deep-Sea Res. 6, 351–367 (1960).

    ADS  Google Scholar 

  9. Williams, P. J. le B., Raine, R. C. T. & Bryan, J. R. Oceanol. Acta 2, 411–416 (1979).

    Google Scholar 

  10. Walgate, R. Nature 284, 586 (1980).

    Article  ADS  Google Scholar 

  11. Billett, D. S. M., Lampitt, R. S., Rice, A. L. & Mantoura, R. F. C. Nature 302, 520–522 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Brown, O. B. et al. Science 229, 163–167 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Fasham, M. J. R., Platt, T., Irwin, B. & Jones, K. Prog. Oceanogr. 14, 129–165 (1985).

    Article  ADS  Google Scholar 

  14. Klein, P. & Coste, B. Deep-Sea Res. 31, 21–37 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Steele, J. H. Nature 313, 355–358 (1985).

    Article  ADS  Google Scholar 

  16. Menzel, D. W. & Ryther, J. H. Deep-Sea Res. 7, 282–288 (1961).

    ADS  Google Scholar 

  17. Cullen, J. J. Can. J. Fish. aquat. Sci. 39, 791–803 (1982).

    Article  CAS  Google Scholar 

  18. Herbland, A. Océanogr. Trop. 18, 295–318 (1983).

    CAS  Google Scholar 

  19. Lewis, M. R. & Platt, T. in Estuarine Comparisons (ed. Kennedy, V.S.) 3–20 (Academic, New York, 1982).

    Book  Google Scholar 

  20. Goldman, J. C. in Flows of Energy and Materials in Marine Ecosystems (ed. Fasham, M. J. R.) 137–170 (Plenum, New York, 1984).

    Book  Google Scholar 

  21. National Academy of Sciences Global Ocean Flux Study. Proc. Workshop (National Academy Press, Washington DC, 1984).

  22. Malone, T. F. & Roederer, J. G. Global Change (Cambridge University Press, 1985).

    Google Scholar 

  23. Sarmiento, J. L. & Togweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Peng, T.-H. & Broecker, W. S. J. geophys. Res. 89, 8170–8180 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Harrison, W. G., Douglas, D., Falkowski, P., Rowe, G. & Vidal, J. J. Plankton Res. 5, 539–556 (1983).

    Article  CAS  Google Scholar 

  26. Glibert, P. M., Biggs, D. C. & McCarthy, J. J. Deep-Sea Res. 29, 837–850 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Eppley, R. W., Renger, E. H. & Harrison, W. G. Limnol. Oceanogr. 24, 483–494 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platt, T., Harrison, W. Biogenic fluxes of carbon and oxygen in the ocean. Nature 318, 55–58 (1985). https://doi.org/10.1038/318055a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318055a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing