Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules

Abstract

An ideal vaccine should elicit a long lasting immune response against the natural parasite, both at the T- and B-cell level. The immune response should occur in all individuals and be directed against determinants that do not vary in the natural parasite population. A major problem in designing synthetic peptide vaccines is that T cells generally recognize peptide antigens only in association with one or a few of the many variants of major histocompatibility complex (MHC) antigens1,2. During the characterization of epitopes of the malaria parasite Plasmodium falciparum that are recognized by human T cells, we analysed a sequence of the circumsporozoite protein, and found that synthetic peptides corresponding to this sequence are recognized by T cells in association with many different MHC class II molecules, both in mouse and in man. This region of the circumsporozoite protein is invariant in different parasite isolates3,4. Peptides derived from this region should be capable of inducing T-cell responses in individuals of most HLA-DR types, and may represent good candidates for inclusion in an effective anti-malaria peptide vaccine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Benacerraf, B. & Germain, R. N. Immunol. Rev. 38, 70–119 (1978).

    Article  CAS  Google Scholar 

  2. Buus, S., Sette, A., Colon, S., Miles, C. & Grey, H. M. Science 235, 1353–1358 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Del Portillo, H. A., Nussenzweig, R. S. & Enea, V. Molec. Biochem. Parasitol. 24, 289–294 (1987).

    Article  CAS  Google Scholar 

  4. De la Cruz, V. F., Lal, A. A. & McCutchan, T. F. J. biol. Chem. 262, 11935–11939 (1987).

    CAS  PubMed  Google Scholar 

  5. Sinigaglia, F. et al. Eur. J. Immunol. 18, 633–636 (1988).

    Article  CAS  Google Scholar 

  6. Trucco, M. M., Garotta, G., Stocker, J. W. & Ceppellini, R. Immunol. Rev. 47, 219–252 (1979).

    Article  CAS  Google Scholar 

  7. Watson, A. M., DeMars, R., Trowbridge, I. S. & Bach, F. H. Nature 304, 358–361 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Ziegler, A. & Milstein, C. Nature 279, 243–244 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Schwartz, R. H. A. Rev. Immunol. 3, 237–261 (1986).

    Article  Google Scholar 

  10. Shastri, N., Gammon, G., Miller A. & Sercarz, E. E. J. exp. Med. 164, 882–896 (1986).

    Article  CAS  Google Scholar 

  11. Livingstone, A. M. & Fathman, C. G. A. Rev. Immunol. 5, 477–502 (1987).

    Article  CAS  Google Scholar 

  12. Zavala, F., Cochrane, A. H., Nardin, E. H., Nussenzweig, R. S. & Nussenzweig, V. J. exp. Med. 157, 1947–1957 (1983).

    Article  CAS  Google Scholar 

  13. Dame, J. B. et al. Science 225, 593–599 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Enea, V. et al. Science 225, 628–630 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Togna, R. et al. J. Immun. 137, 2956–2960 (1986).

    CAS  PubMed  Google Scholar 

  16. Good, M. et al. J. exp. Med. 164, 655–660 (1986).

    Article  CAS  Google Scholar 

  17. Del Giudice et al. J. Immun. 137, 2952–2955 (1986).

    CAS  PubMed  Google Scholar 

  18. Baur, M. P. & Danilovs, J. A. in Histocompatibilily Testing (ed. Terasaki, P.) 955–968 (UCLA, Los Angeles, 1980).

    Google Scholar 

  19. Rothbard, J. & Taylor, W. EMBO J. 7, 93–100 (1988).

    Article  CAS  Google Scholar 

  20. DeLisi, C. & Berzofsky, J. Proc. natn. Acad Sci. U.S.A. 82, 7048–7052 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Bjorkman, P. J. et al. Nature 329, 506–518 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Guttinger, M. et al. EMBO J. 7, 2555–2557 (1988).

    Article  CAS  Google Scholar 

  23. Wilkinson, D. et al. J. exp. Med. 167, 1442–1458 (1988).

    Article  CAS  Google Scholar 

  24. Atherton, A. & Sheppard, R. C. in The Peptides: Analysis, Synthesis, Biology Vol. 9, (eds Udenfriend, S. & Meienhofer, J.) 1–38 (Academic, New York, 1987).

    Google Scholar 

  25. Dourtoglou, V., Ziegler, J. C. & Gross, B. Tetrahedron Lett. 1269–1272 (1987).

  26. Etlinger, H. M. et al. J. Immun. 140, 626–633 (1988).

    CAS  PubMed  Google Scholar 

  27. Etlinger, H. M., Heimer, E. P., Trzeciak, A., Felix, A. M. & Gillessen, D. Immunology 64, 551–558 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kilgus, J., Romagnoli, P., Guttinger, M., Adorini, L. & Sinigaglia, F. Proc. natn. Acad. Sci U.S.A. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinigaglia, F., Guttinger, M., Kilgus, J. et al. A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules. Nature 336, 778–780 (1988). https://doi.org/10.1038/336778a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336778a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing