Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The origin of non-sea-salt sulphate in the Mount Logan ice core

Abstract

IT has been suggested1 that oxidized sulphur compounds might play an important part in influencing climate, as they serve as cloud condensation nuclei and thus could affect the radiative properties of clouds. Schwartz2, however, finds no evidence for a climate response arising from the increased concentrations of oxidized sulphur compounds resulting from the burning of fossil fuels. He contends that such a response should be detectable if these compounds are indeed important, as they are distributed widely in the atmosphere. Measurements of sulphate concentrations3,4 in an ice core from Mount Logan (5,951 m), in northwestern Canada, indicate that the background concentration of non-sea-salt sulphate in snow deposited on the ice cap during the past century has remained nearly constant. Here we report 210Pb/137Cs ratios measured in the ice core and in soil cores collected at nearby low-altitude sites. As the 210Pb/137Cs ratio in sub-micrometre aerosols decreases with altitude, and as the non-sea-salt sulphate to210Pb concentration ratios in snow deposited on Mount Logan are lower than values reported5 for aerosol samples collected at nearby high-latitude, low-altitude sites, our data indicate that the ice core contains sub-micrometre aerosols scavenged from the middle or upper troposphere, or both. Thus, the apparent lack of a secular increase in the non-sea-salt sulphate concentrations at Mount Logan suggests that anthropogenic oxidized sulphur compounds probably have not significantly affected a large part of the middle or upper troposphere (or both) in the remote Northern Hemisphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Charlson, R., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Schwartz, S. E. Nature 336, 441–445 (1988).

    Article  ADS  Google Scholar 

  3. Holdsworth, G. & Peake, E. Ann. Glacial. 7, 153–160 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Holdsworth, G., Krouse, H. R. & Peake, E. Ann. Glaciol. 10, 57–62 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Turekian, K. K., Graustein, W. C. & Cochran, J. K. in Chem. Oceanogr. 10, 51–81 (1989).

    Google Scholar 

  6. Herron, M. M. J. geophys. Res. 85, 3052–3060 (1982).

    Article  ADS  Google Scholar 

  7. Neftel, A., Beer, J., Oeschge, R. H., Zurcher, F. & Finkel, R. C. Nature 314, 611–613 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Mayewski, P. et al. Science 232, 975–977 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Lockhart, L. B. Jr, Patterson, R. L. & Saunders, A. W. Jr J. geophys. Res. 24, 6033–6041 (1965).

    Article  ADS  Google Scholar 

  10. Graustein, W. C. & Turekian, K. K. in Precipitation Scavenging, Dry Deposition, and Resuspension (eds Pruppacher, H. R., Semonin, R. G. & Slinn, W. G. N.) 1315–1324 (Elsevier, New York, 1983).

    Google Scholar 

  11. Bondietti, E. A., Papastefanou, C. & Rangarajan, C. Am. chem. Soc. Symp. Ser. Vol. 331 (ed. Hopke, P. K.) 377–397 (American Chemical Society, New York, 1988).

    Google Scholar 

  12. Graustein, W. C. & Turekian, K. K. J. geophys. Res. 91, 7065–7075 (1986).

    Article  ADS  Google Scholar 

  13. Moore, H. E., Poet, S. E. & Martell, E. A. J. geophys. Res. 78, 7065–7075 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Monaghan, M. C. J. geophys. Res. 94, 6449–6456 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Benninger, L. K., Lewis, D. M. & Turekian, K. K. Am. chem. Soc. Symp. Ser. Vol. 187, 201–210 (1975).

    Google Scholar 

  16. Moore, H. E. & Poet, S. E. J. geophys. Res. 81, 1056–1048 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Nozaki, Y., DeMaster, D. J., Lewis, D. M. & Turekian, K. K. J. geophys. Res. 83, 4047–4051 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Volchok, H. L. in Polluted Rain (eds Toribara, T. Y., Miller, M. W. & Morrow, P. E.) 435–448 (Plenum, New York, 1980).

    Book  Google Scholar 

  19. Koide, M., Michel, R., Goldberg, E. D., Herron, M. M. & Langway, C. C. Jr Nature 296, 544–547 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Gaggeler, H., von Gunten, H. R., Rossler, E., Oeschger, H. & Schotterer, U. J. Glaciol. 29, 165–177 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Delmas, R. & Pourchet, M. Int. Assoc. hydrol. Sci. Publn 118, 159–163 (1977).

    CAS  Google Scholar 

  22. Holdsworth, G., Pourchet, M., Prantl, F. A. & Meyerhof, D. P. Atmos. Envir. 18, 461–466 (1984).

    Article  Google Scholar 

  23. Holdsworth, G. in Ice Drilling Technology USA-CRREL spec. Rep. 84-34 (eds Holdsworth, G., Kuivinen, K. C. & Rand, J.) 21–31 (1984).

    Google Scholar 

  24. Kharkar, D.P., Thomson, J., Turekian, K. K. & Forster, W. O. Limnol. Oceanogr. 21, 294–299 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Cambray, R., Fisher, E. M. R., Spicer, G. S., Wallace, C. G. & Webber, T. J. Brit. Rep. AERE-R-4687 (Atomic Energy Research Establishment, Harwell, UK, 1984).

    Google Scholar 

  26. Feely, H. W., Toonkel, L. & Larsen, R. Environ. Q. Rep. EML-395, appendix (US dept. of Energy, New York, 1981).

    Google Scholar 

  27. Cutshall, I. L., Larsen, R. & Olsen, C. R. Nucl. Instrum. Meth. 206, 309–312 (1983).

    Article  CAS  Google Scholar 

  28. Andreae, M. O. et al. J. atmos. Chem. 6, 149–173 (1988).

    Article  CAS  Google Scholar 

  29. Moore, H. E., Poet, S. E., Martell, E. A. & Wilkening, M. H. J. geophys. Res. 79, 5019–5024 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monaghan, M., Holdsworth, G. The origin of non-sea-salt sulphate in the Mount Logan ice core. Nature 343, 245–248 (1990). https://doi.org/10.1038/343245a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343245a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing