Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Significant flux of atmospheric nitrous oxide from the northwest Indian Ocean

Abstract

INTEREST in nitrous oxide (N2O) has increased considerably in the light of its deleterious effect on the ozone layer1, and contribution to the greenhouse effect2. There are many sources of atmospheric N2O, both anthropogenic (for example, combustion) and natural, but the global budget is still inadequately defined. Despite the fact that most of the world's oceans are close to equilibrium with the atmosphere3, water bodies depleted in oxygen have been identified as areas of N2O production4,5, and so the oceans represent a potential source of atmospheric N2O. Here we report elevated N2O concentrations in the northwest Indian Ocean, an area that exhibits upwelling and high oxygen consumption in the water column. We found that N2O was supersaturated in both oxygen-saturated surface waters (up to 246% N2O saturation) and oxygen-depleted sub-surface waters (1,264% N2O saturation). The calculated flux to the atmosphere indicated that upwelling in the northwest Indian Ocean (15–25° N) represents one of the most significant marine sources of N2O, contributing between 5 and 18% of the total marine flux from a surface area of only 0.43% of the world ocean. These data suggest that the oceanic flux of N2O to the atmosphere shows strong spatial heterogeneity which should be considered in global budgets and ocean–atmosphere models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hahn, J. & Crutzen, P. J. Phil. Trans. R. Soc. 296, 521–541 (1982).

    Article  CAS  Google Scholar 

  2. Yung, Y. L., Wang, W. C. & Lacias, A. A. Geophys. Res. Lett. 3, 619–621 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Butler, J. H., Elkins, J. W., Thompson, T. M. & Egan, K. B. J. geophys. Res. 94, 14865–14877 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Elkins, J. W., Wofsy, S. C., McElroy, M. B., Kolb, C. E. & Kaplan, W. E. Nature 275, 602–605 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Cline, J. D., Wisegarver, D. P. & Kelly-Hansen, K. Deep Sea Res. 34, 857–873 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Qasim, S. Z. Deep Sea Res. 29, 1041–1068 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Cohen, Y. & Gordon, L. I. Deep Sea Res. 25, 509–524 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Rasmussen, R. A. & Pierotti, D. Pure appl. Geophys. 116, 405–413 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Hahn, J. Denitrifcation, Nitrification and Atmospheric Nitrous Oxide (ed. Delwiche, C. C.) 191–240 (Wiley-Interscience, New York, 1981).

    Google Scholar 

  10. Codispoti, L. A. et al. Science 233, 1200–1202 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Cohen, Y. & Gordon, L. I. J. geophys. Res. 84, 347–353 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Redfield, A. C., Ketchum, B. H. & Richards, F. A. The Sea (ed. Hill, M. N.) 26–77 (Wiley-Interscience, New York, 1963).

    Google Scholar 

  13. Yoshida, N., Hattori, A., Saino, T., Matsuo, S. & Wada, E. Nature 307, 442–444 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Goreau, T. J. et al. Appl. envir. Microbiol. 40, 526–532 (1980).

    CAS  Google Scholar 

  15. Jørgensen, K. S., Jensen, H. B. & Sørensen, J. Can. J. Microbiol. 30, 1073–1078 (1984).

    Article  Google Scholar 

  16. Yoshida, N. et al. Nature 342, 895–897 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Law, C. S. & Owens, N. J. P. Neth. J. Sea Res. 25, 65–74 (1990).

    Article  CAS  Google Scholar 

  18. Weiss, R. F. Eos 1101–1102 (1978).

  19. Upstill-Goddard, R. C., Watson, A. J., Liss, P. S. & Liddicoat, M. I. Tellus (in the press).

  20. Liss, P. S. & Merlivat, L. The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) 113–127 (Riedel, Dordrecht, 1986).

    Book  Google Scholar 

  21. Law, C. S. thesis, Univ. Dundee (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, C., Owens, N. Significant flux of atmospheric nitrous oxide from the northwest Indian Ocean. Nature 346, 826–828 (1990). https://doi.org/10.1038/346826a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346826a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing