Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global increase of atmospheric molecular hydrogen

Abstract

IT is now well known that levels of atmospheric CO2, CH4, N2O and CO are increasing at substantial rates as a result of human activities. Here we report that levels of another trace gas, molecular hydrogen, are also increasing. Our systematic measurements between 1985 and 1989 show that the concentration of H2 increased at an average rate of 3.2 ± 0.5 parts per 109 by volume per year (a relative increase of 0.6 ± 0.1% yr−1). These increases originate from anthropogenic sources. Higher levels of hydrogen will add more water vapour to the stratosphere, where it can affect stratospheric ozone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rasmussen, R. A. & Khalil, M. A. K. J. geophys. Res. 86, 9826–9832 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Rasmussen, R. A. & Lovelock, J. E. J. geophys. Res. 88, 8369–8378 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Khalil, M. A. K. & Rasmussen, R. A. Nature 332, 242–245 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Khalil, M. A. K. & Rasmussen, R. A. Envir. Sci. Technol. 24, 549–553 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Khalil, M. A. K. & Rasmussen, R. A. Antarct. J. U.S. (in the press).

  6. Khalil, M. A. K. & Rasmussen, R. A. Global Monit. clim. Change 17, 111–113 (1989).

    Google Scholar 

  7. Schmidt, U. J. geophys. Res. 83, 941–946 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Herr, F. L. & Barger, W. R. J. geophys. Res. 83, 6199–6205 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Enhalt, D. H., Schmidt, U. & Heidt, L. E. J. geophys. Res. 82, 5907–5911 (1977).

    Article  ADS  Google Scholar 

  10. Snedecor, G. W. & Cochran, W. G. Statistical Methods (Iowa State University Press, Am's, 1980).

    MATH  Google Scholar 

  11. Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods (Wiley, New York, 1973).

    MATH  Google Scholar 

  12. Schmidt, U. Tellus 26, 78–90 (1974); 27, 1 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Warneck, P. Chemistry of the Natural Atmosphere (Academic, New York, 1988).

    Google Scholar 

  14. Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H. & Seiler, W. Nature 282, 253–256 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Seiler, W. & Schmidt, U. The Sea 5, 219–243 (1974).

    CAS  Google Scholar 

  16. Conrad, R. & Seiler, W. J. geophys. Res. 85, 5493–5498 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, M., Rasmussen, R. Global increase of atmospheric molecular hydrogen. Nature 347, 743–745 (1990). https://doi.org/10.1038/347743a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347743a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing