Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for lower productivity in the Antarctic Ocean during the last glaciation

Abstract

BOTH increased biological productivity and more efficient uptake of upwelled nutrients in high-latitude oceans have been proposed1–5 as mechanisms responsible for the glacial reduction in atmospheric concentrations of carbon dioxide deduced from ice-core measurements6–8. These glacial models invoke more efficient "biological pumping9 of carbon into the deep sea by increasing the uptake of 'excess' biolimiting nutrients in the Antarctic surface ocean9 or by reorganizing chemical circulation patterns within the ocean10,11. Here we challenge this conventional view with new evidence from tracers of palaeoproductivity preserved in Antarctic sediments. Records of the accumulation rates of diatom shells, the ratio of germanium to silicon in diatomaceous opal and the carbon isotope ratio in foraminiferal carbonate all suggest lower glacial productivity and less efficient uptake of nutrients. Although alternative interpretations are possible, our results support previous studies that indicate lower glacial productivity in the Southern Ocean12,13 and raise new questions about the role of ocean productivity in models of the causes (or remedies) for changes in atmospheric concentrations of carbon dioxide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knox, F. & McElroy, W. B. J. geophys. Res. 89, 4629–4637 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Siegenthaler, U. & Wenk, T. Nature 308, 624–626 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Keir, R. S. Paleoceanography 5, 253–276 (1990).

    Article  ADS  Google Scholar 

  5. Lyle, M. & Pisias, N. Paleoceanography 5, 15–42 (1990).

    Article  ADS  Google Scholar 

  6. Neftel, A. H., Oeschger, H., Shwander, J., Stauffer, B. & Zumbrunn, R. Nature 295, 220–223 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Delmas, R. J., Ascencio, J. M. & Legrand, M. Nature 284, 155–159 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Barnola, J. M., Raynaud, D., Korotkevich, W. S. & Lorius, C. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Martin, J. H. Paleoceanography 5, 1–15 (1990).

    Article  ADS  Google Scholar 

  10. Broecker, W. S. & Peng, T-H. Global biogeochem. Cycles 3, 215–239 (1989).

    Article  ADS  Google Scholar 

  11. Boyle, E. A. J. geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

  12. Labeyrie, L. D. & Duplessy, J. C. Palaeogr. Palaeoclimatol. Palaeoecol. 50, 217–240 (1985).

    ADS  CAS  Google Scholar 

  13. Grobe, H., Mackensen, A., Hubberten, H.-W., Spiess, V. & Fütterer, D. K. in Geological History of the Polar Oceans: Arctic vs Antarctic (eds Bleil, U. Thiede, J.) 539–572 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  14. Mortlock, R. A. & Froelich, P. N. Deep-Sea Res. 36, 1415–1426 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Shemesh, A., Mortlock, R. A., Smith, R. J. & Froelich, P. N. Mar. Chem. 25, 305–323 (1988).

    Article  CAS  Google Scholar 

  16. Charles, C. D. thesis, Columbia Univ. (1990).

  17. Charles, C. D. et al. Paleoceanography (submitted).

  18. Martinson, D. G. et al. Quat. Sci. 27, 1–29 (1987).

    CAS  Google Scholar 

  19. Hays, J. D., Imbrie, J., & Shackleton, N. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Hays, J. D., & Shackleton, N. S. Geology 4, 649–652 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Imbrie, J. et al. in Milankovitch and Climate (eds Berger, A. et al.) 269–305 (Reidel, Hingham, 1984).

    Google Scholar 

  22. Cooke, D. W. & Hays, J. D. in Antarctic Geoscience (ed. Craddock C.) 1017–1025 (University of Wisconsin, Madison, 1982).

    Google Scholar 

  23. Shemesh, A., Burckle, L. H. & Froelich, P. N. Quat. Sci. 31, 288–308 (1989).

    Google Scholar 

  24. Burckle, L. H. & Cirilli, J. Micropaleontology 33, 82–86 (1987).

    Article  Google Scholar 

  25. Azam, F. & Volcani, B. E. in Silicon and Siliceous Structures in Biological Systems (eds Simpson, T. L. & Volcani, B. E.) 43–67 (Springer, New York, 1981).

    Book  Google Scholar 

  26. Froelich, P. N., Hambrick, G. A., Andreae, M. O., Mortlock, R. A. & Edmond, J. M. J. geophys Res. 90, 1133–1141 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Murnane, R. G. & Stallard, R. F. Paleoceanography 3, 461–469 (1988).

    Article  ADS  Google Scholar 

  28. Froelich, P. N., Mortlock, R. A., & Shemesh, A. Global biogeochem. Cycles 3, 79–88 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Pisias, N. G. Geol. Soc. Am. Mem. 145, 375–392 (1976).

    CAS  Google Scholar 

  30. Pisias, N. G. & Leinen, M. in Milankovitch and Climate (eds Berger A. et al.) 307–330 (Reidel, New York, 1984).

    Google Scholar 

  31. Broecker, W. S. & Peng, T-H. Tracers in the Sea (Eldigio, Palisades, 1982).

    Google Scholar 

  32. Wefer, G., & Fischer, G. Mar. Chem. (in the press).

  33. Honjo, S. in Polar Oceanography, Part B: Chemistry, Biology, and Geology (in the press).

  34. Charles, C. D. & Fairbanks, R. G. in Geological History of the Polar Oceans: Arctic vs Antarctic (eds Bleil, U. & Thiede, J.) 519–538 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  35. Keigwin, L. D. & Boyle, E. A. Palaeogr. Palaeoclimatol. Palaeoecol. 73, 85–106 (1989).

    Article  ADS  Google Scholar 

  36. Legrand, M. et al. Nature 350, 144–146 (1991).

    Article  ADS  CAS  Google Scholar 

  37. Gibson, J. A. E., Barrick, R. C., Burton, H. R. & McTaggart, A. R. Mar. Biol. 104, 339–346 (1990).

    Article  CAS  Google Scholar 

  38. Froelich, P. N. et al. Proc Ocean Drilling Program, Sci. Rep. 114, 515–550 (1991).

    Google Scholar 

  39. Ledford-Hoffman, P. A., DeMaster, D. J. & Nittrouer, C. A. Geochim. cosmochim. Acta 50, 2099–2110 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortlock, R., Charles, C., Froelich, P. et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223 (1991). https://doi.org/10.1038/351220a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351220a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing