Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 mica

Abstract

ONE of the principal long-term problems associated with nuclear fission reactions is the generation of large amounts of radioactive strontium isotopes, particularly 90Sr. An effective method for the removal and entrapment of strontium from contaminated environments is therefore desirable to prevent potential health problems associated with radionuclide ingestion1–5. In this context, inorganic cation exchangers have been useful by virtue of their capacity for structure-specific ion exchange6–12. We report here that 'Na-4-mica'13–15, a highly charged sodium fluorophlogopite mica (Na4Mg6Al4Si4O20F4), can be used for the selective removal of strontium ions from solution and for strontium immobilization at room temperature. We also report a novel method for bulk synthesis of 'Na-4-mica' as a pure phase. This material is unique among highly charged or brittle micas because of its ability to undergo a hydration reaction, which allows the material to be used as a highly selective strontium-ion sieve. This or similar compounds could find potential application in the decontamination and disposal of nuclear waste.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacobsen, L., Simmons, E. & Block, M. J. Lab. clin. Med. 34, 1640–1655 (1949).

    Google Scholar 

  2. Adler, S., Trobaugh, F. & Knospe, W. J. Lab. clin. Med. 89, 592–602 (1977).

    CAS  PubMed  Google Scholar 

  3. Sawyer, R., Strausbauch, P. & Morahan, P. Lab. Invest. 46, 165–170 (1982).

    CAS  PubMed  Google Scholar 

  4. Volkman, A., Chang, N., Strausbauch, P. & Morahan, P. Lab. Invest. 49, 291–298 (1983).

    CAS  PubMed  Google Scholar 

  5. Shibata, Y. & Volkman, A. J. Immunol. 135, 3897–3904 (1985).

    CAS  PubMed  Google Scholar 

  6. Kerr, J. Am. Ceram. Soc. Bull. 38, 374–376 (1954).

    Google Scholar 

  7. Ames, L. L. Am. Miner. 46, 1120–1131 (1961).

    CAS  Google Scholar 

  8. Hatch, L. & Regan, W. Jr. Nucleonics 13, 27–29 (1955).

    CAS  Google Scholar 

  9. Sawhney, B. Soil Sci. Soc. Am. Proc. 28, 183–186 (1964).

    Article  ADS  CAS  Google Scholar 

  10. Komarneni, S. & Roy, R. Nucl. Chem. Waste Management 2, 259–264 (1981).

    Article  CAS  Google Scholar 

  11. Komarneni, S. & Roy, R. Nature 299, 707–708 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Clearfield, A. Inorganic Ion Exchange Materials (CRC, Boca Raton, 1982).

    Google Scholar 

  13. Gregorkiwitz, M., Alcover, J., Rausell-Colom, J. & Serratosa, J. in 2eme Reunion des Groupes Europeens d'Argiles, Strasbourg, 64 (1972).

    Google Scholar 

  14. Herrero, C., Gregorkiewitz, M., Sanj, J. & Serratosa, J. Phys. Chem. Minerals 15, 84–90 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Gregorkiewitz, M. & Rausell-Colom, J. Am. Miner. 72, 515–527 (1987).

    CAS  Google Scholar 

  16. Komarneni, S. & Roy, R. Science 239, 1286–1288 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Komarneni, S. & Roy, R. U.S. Patent 4,808,318 (1989).

  18. Giese, R. in Reviews in Mineralogy, Vol. 13, Micas (ed. Bailey, S. W) (Mineralogical Society of America- Bookcrafters, Chelsea, Michigan, 1984).

    Google Scholar 

  19. Paulus, W. thesis, Pennsylvania State Univ. (1990).

  20. Tamura, T. Am. Assoc. Petrol. Geol. Mem. 18, 318–330 (1972).

    CAS  Google Scholar 

  21. Sawhney, B. Soil Sci. Soc. Am. Proc. 33, 42–46 (1969).

    Article  ADS  CAS  Google Scholar 

  22. Shainberg, I. & Kemper, W. Soil Sci. Soc. Am. Proc. 30, 707–713 (1966).

    Article  ADS  CAS  Google Scholar 

  23. Komarneni, S. & Roy, R. Clay Miner. 21, 125–131 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Breck, D. Zeolite Molecular Sieves, Structure, Chemistry, and Use (Wiley, New York, 1974).

    Google Scholar 

  25. Guggenheim, S. in Reviews of Minerology, Vol. 13, Micas (ed. Bailey, S. W.) (Mineralogical Society of America-Bookcrafters, Inc., Chelsea, Michigan, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulus, W., Komarneni, S. & Roy, R. Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 mica. Nature 357, 571–573 (1992). https://doi.org/10.1038/357571a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357571a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing