Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1

Abstract

MANY tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins1–4. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity5–9 and increases the level of GTP-bound Ras10–12, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains13–15. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain16,17. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling18–20 and contains a central domain related to known Ras-GNRPs21–23. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Nature 313, 241–248 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Smith, M. R., DeGudicibus, S. J. & Stacey, D. W. Nature 320, 540–543 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Szeberenyi, J., Cai, H. & Cooper, G. M. Molec. cell. Blol. 10, 5324–5332 (1990).

    Article  CAS  Google Scholar 

  4. Thomas, S. M., DeMarco, M., D'Arcangelo, G., Halegoua, S. & Brugge, J. S. Cell 68, 1031–1040 (1992).

    Article  CAS  Google Scholar 

  5. Medema, R. H., de Vries-Smits, A. M. M., van der Zon, G. C. M., Maassen, J. A. & Bos, J. L. Molec. cell. Biol. 13, 155–162 (1993).

    Article  CAS  Google Scholar 

  6. Zhang, K., Papageorge, A. G. & Lowy, D. R. Science 257, 671–674 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Burgering, B. M. Th. et al. EMBO J. 10, 1103–1109 (1991).

    Article  CAS  Google Scholar 

  8. Li, B.-Q., Kaplan, D., Kung, H.-F. & Kamata, T. Science 256, 1456–1459 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Buday, L. & Downward, J. Molec. cell. Biol. 13, 1903–1910 (1993).

    Article  CAS  Google Scholar 

  10. Gibbs, J. B., Marshall, M. S., Scolnick, E. M., Dixon, R. A. F. & Vogel, U. S. J. biol. Chem. 265, 20437–20442 (1990).

    CAS  PubMed  Google Scholar 

  11. Satoh, T. et al. Proc. natn. Acad. Sci. U.S.A. 87, 7926–7929 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Qiu, M.-S. & Green, S. H. Neuron 7, 937–946 (1991).

    Article  CAS  Google Scholar 

  13. Clark, S. G., Stern, M. J. & Horvitz, H. R. Nature 356, 340–344 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Olivier, J. P. et al. Cell 73, 179–191 (1993).

    Article  CAS  Google Scholar 

  15. Simon, M. A., Dodson, G. S. & Rubin, G. M. Cell 73, 169–177 (1993).

    Article  CAS  Google Scholar 

  16. Lowenstein, E. J. et al. Cell 70, 431–442 (1992).

    Article  CAS  Google Scholar 

  17. Rozakis-Adcock, M. et al. Nature 360, 689–692 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Bowtell, D., Fu, P., Simon, M. & Senior, P. Proc. natn. Acad. Sci. U.S.A. 89, 6511–6515 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Simon, M. A., Bowtell, D. D. L., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Cell 67, 701–716 (1991).

    Article  CAS  Google Scholar 

  20. Bonfini, L., Karlovich, C. A., Dasgupta, C. & Banerjee, V. Science 255, 603–606 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Jones, S., Vignais, M.-L. & Broach, J. R. Molec. cell. Biol. 11, 2641–2646 (1991).

    Article  CAS  Google Scholar 

  22. Lai, C.-C., Boguski, M., Broek, D. & Powers, S. Molec. cell. Biol. 13, 1345–1352 (1993).

    Article  CAS  Google Scholar 

  23. Shou, C., Farnsworth, C. L., Neel, B. G. & Feig, L. A. Nature 358, 351–354 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Pelicci, G. et al. Cell 70, 93–104 (1992).

    Article  CAS  Google Scholar 

  25. Cicchetti, P., Mayer, B. J., Thiel, G. & Baltimore, D. Science 257, 803–806 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Yu, H. et al. Science 258, 1665–1668 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. Science 259, 1157–1161 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Li, N. et al. Nature 383, 85–88 (1993).

    Article  ADS  Google Scholar 

  29. Gale, N. W., Kaplan, S., Lowenstein, E. J., Schlessinger, J. & Bar-Sagl, D. Nature 363, 88–92 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Gross, E., Goldberg, D. & Levitzki, A. Nature 360, 762–765 (1993).

    Article  ADS  Google Scholar 

  31. Moran, M., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Molec. cell. Biol. 11, 1804–1812 (1991).

    Article  CAS  Google Scholar 

  32. Matuoka, K., Shibata, M., Yamakawa, A. & Takenawa, T. Proc. natn. Acad. Sci. U.S.A. 89, 9015–9019 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozakis-Adcock, M., Fernley, R., Wade, J. et al. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363, 83–85 (1993). https://doi.org/10.1038/363083a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363083a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing