Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila

Abstract

THE vestimentiferan tubeworm Riftia pachyptila is found around hydrothermal vent areas in the deep sea. Intracellular bacterial chemoautotrophic symbionts use the oxidation of sulphide from the effluent of the vents as an energy source for CO2 fixation. They apparently provide most or all of the nutritional requirements for their gutless hosts1–5. This kind of symbiosis has since been found in many other species from various other phyla from other habitats6–9. Here we present results that the bacteria of R. pachyptila may cover a significant fraction of their respiratory needs by the use of nitrate in addition to oxygen. Nitrate is reduced to nitrite, which may be the end product (nitrate respiration)10 or it may be further reduced to nitrogen gas (denitrification)11. This metabolic trait may have an important role in the colonization of hypoxic habitats in general by animals with this kind of symbiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Felbeck, H. Science 213, 336–338 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Felbeck, H., Childress, J. J. & Somero, G. N. Nature 293, 291–293 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Corliss, J. B. et al. Science 203, 1073–1083 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Science 213, 340–342 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Bosch, C. & Grasse, P. P. C. R. Acad. Sci. Paris (ser III) 299, 413–419 (1984).

    Google Scholar 

  6. Childress, J. J. & Fisher, C. R. Oceanogr. Mar. Biol. A. Rev. 30, 337–441 (1992).

    Google Scholar 

  7. Felbeck, H. in Endocytobioiogy IV (eds Nardon, P., Gianinazzi-Pearson, V., Grenier, A. M., Margulis, L. & Smith, D. C.) 327–334 (Institut National de la Recherche-Agronomique, Paris, 1990).

    Google Scholar 

  8. Fisher, C. R. Rev. Aquat. Sci. 2, 399–436 (1990).

    CAS  Google Scholar 

  9. Tunnicliffe, V. Palaios 7, 338–350 (1992).

    Article  ADS  Google Scholar 

  10. Stewart, V. Microbiol. Rev. 52, 190–232 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tiedje, J. M. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 179–244 (Wiley, New York, 1988).

    Google Scholar 

  12. Distel, D. L. & Wood, A. P. J. Bact. 174, 6317–6320 (1992).

    Article  CAS  Google Scholar 

  13. Distel, D. L. & Felbeck, H. J. exp. Zool. 247, 11–22 (1988).

    Article  CAS  Google Scholar 

  14. Belkin, S., Nelson, D. C. & Jannasch, H. W. Biol. Bull. 170, 110–121 (1986).

    Article  Google Scholar 

  15. Wilmot, D. B. J. & Vetter, R. D. Mar. Biol. 106, 273–284 (1990).

    Article  CAS  Google Scholar 

  16. Arp, A. J. & Childress, J. J. Science 213, 342–344 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Fisher, C. R., Childress, J. J. & Minnich, E. Biol. Bull. 177, 372–385 (1989).

    Article  CAS  Google Scholar 

  18. Childress, J. J., Arp, A. J. & Fisher, C. R. Mar. Biol. 83, 109–124 (1984).

    Article  CAS  Google Scholar 

  19. Johnson, K. S., Childress, J. J., Hessler, R. R., Sakamoto, A. C. M. & Beehler, C. L. Deep Sea Res. Part A Oceanogr. Res. Pap. 35, 1723–1744 (1988).

    Article  ADS  Google Scholar 

  20. Hentschel, U., Cary, S. C. & Felbeck, H. Mar. Ecol. Prog. Ser. 94, 35–41 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Green, L. C. et al. Analyt. Biochem. 126, 131–138 (1982)

    Article  CAS  Google Scholar 

  22. Cortas, N. K. & Wakid, N. K. Clin. Chem. 36, 1440–1443 (1990).

    CAS  PubMed  Google Scholar 

  23. Childress, J. J. et al. Biol. Bull 180, 135–153 (1991).

    Article  CAS  Google Scholar 

  24. Fisher, C. R., Childress, J. J. & Sanders, N. K. Symbiosis 5, 229–246 (1988).

    CAS  Google Scholar 

  25. Gieskes, J. & Peretsman, Ocean Drilling Program Tech. Note 5, 30–36 (1986).

    Google Scholar 

  26. O'Brien, J. & Vetter, R. D. J. exp. Biol. 149, 133–148 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel, U., Felbeck, H. Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature 366, 338–340 (1993). https://doi.org/10.1038/366338a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366338a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing