Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration

Abstract

DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  2. Broecker, W. S. & Peng, T. H. Globl Biogeochem. Cycles 1, 15–29 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Boyle, E. A. Nature 331, 55–56 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Emerson, S. R. & Archer, D. E. Paleoceanography 7, 319–332 (1992).

    Article  ADS  Google Scholar 

  5. Emerson, S. & Bender, M. L. J. mar. Res. 39, 139–162 (1981).

    CAS  Google Scholar 

  6. Archer, D. E. J. geophys. Res. 96, 17037–17050 (1991).

    Article  ADS  Google Scholar 

  7. Heinze, C., Maier-Reimer, E. & Winn, K. Paleoceanography 6, 395–430 (1991).

    Article  ADS  Google Scholar 

  8. Maier-Reimer, E. Globl Biogeochem. Cycles 7, 645–678 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Milliman, J. D. Marine Carbonates 1–375 (Springer, Heidelberg, 1974).

    Google Scholar 

  10. Davies, T. A. & Worsley, T. R. Paleoenvironmental Implications of Oceanic Carbonate Sedimentation Rates, 169–179 (Spec. Publ. No. 32, Soc. Econ. Paleontologists and Mineralogists, Tulsa, 1981).

    Google Scholar 

  11. Archer, D., Emerson, S. & Reimers, C. Geochim. cosmochim. Acta 53, 2831–2846 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Berger, W. H. Naturwissenschaften 69, 87–88 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Opdyke, B. N. & Walker, J. C. G. Geology 20, 733–736 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity (eds Hansen J. E. & Takahashi, T.) 337–351 (Am. geophys. Un., Washington DC, 1984).

    Book  Google Scholar 

  15. Peterson, L. C. & Prell, W. L. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present (eds Sundquist E. T. & Broecker, W. S.) 251–269 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  16. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Keir, R. S. Paleoooceangraphy 5, 253–277 (1990).

    Article  ADS  Google Scholar 

  18. Sarnthein, M., Winn, K., Duplessy, J. C. & Fontugne, M. R. Paleoceanography 3, 361–399 (1988).

    Article  ADS  Google Scholar 

  19. Lyle, M. et al. Paleoceanography 3, 39–59 (1988).

    Article  ADS  Google Scholar 

  20. Lyle, M. Nature 335, 529–532 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Mix, A. C. Nature 337, 541–544 (1989). (OK?)

    Article  ADS  CAS  Google Scholar 

  22. Lisitzin, A. P. in The Micropaleontology of Oceans (eds Funnell, B. M. & Reidel, W. R.) 173–195 (Cambridge Univ. Press, London, 1971).

    Google Scholar 

  23. Howard, W. R. & Prell, W. L. Paleoceanography 7, 79–118 (1992).

    Article  ADS  Google Scholar 

  24. Spivack, A. J., You, C.-F. & Smith, H. J. Nature 363, 149–151 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Broecker, W. S. & Peng, T.-H. Globl Biogeochem. Cycles 3, 215–239 (1989).

    Article  ADS  Google Scholar 

  26. Sarmiento, J. L., Toggweiler, J. R. & Najjar, R. Phil. Trans. R. Soc. Lond. A 325, 3–21 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Leuenberger, M., Seigenthaler, U. & Langway, C. C. Nature 357, 488–490 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Bacastow, R. & Maier-Reimer, E. Clim. Dynam. 4, 95–125 (1990).

    Article  ADS  Google Scholar 

  29. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. M. Deep-Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Keir, R. S. Geochim. cosmochim. Acta 44, 241–252 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Biscaye, P. E., Kolla, V. & Turekian, K. K. J. geophys. Res. 81, 2595–2603 (1976).

    Article  ADS  CAS  Google Scholar 

  32. Berger, W. H., Adelseck, C. G. & Mayer, L. A. J. geophys. Res. 81, 2617–2672 (1976).

    Article  ADS  CAS  Google Scholar 

  33. Kolla, V., Bé, A. W. H. & Biscaye, P. J. geophys. Res. 81, 2605–2616 (1976).

    Article  ADS  CAS  Google Scholar 

  34. Hemming, N. G. & Hanson, G. N. Geochim. cosmochim. Acta 56, 537–544 (1992).

    Article  ADS  CAS  Google Scholar 

  35. Takahashi, T., Broecker, W. S., Bainbridge, A. C. & Weiss, R. F. Tech. Rep. No. 1, CU-1-80 (Lamont-Doherty Geological Observatory, Palisades, New York, 1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, D., Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994). https://doi.org/10.1038/367260a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367260a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing