Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An upper limit on the density of low-mass stars in the Galactic halo

Abstract

DESPITE the evidence for substantial amounts of dark matter in the haloes of galaxies1,2, its nature is still unknown. Gravitational microlensing of light from a nearby galaxy by objects in the Galactic halo with masses of about 0.1 solar masses was reported recently3,4. If these objects are baryonic, low-mass stars seem the most probable candidates. But extrapolation of the locally observed distribution of stellar masses5–7 to this range suggests that such low-mass stars comprise an insignificant fraction of the Galactic halo, so that microlensing events due to 0.1-solar-mass stars should be rare. Here we report the results of a search for very low-mass stars at high galactic latitudes. Using their near-infrared colours to estimate their intrinsic luminosities, we conclude that very little of the dark matter in the halo of the Milky Way can be made of low-mass hydrogen-burning stars. If the dark matter is baryonic, then we predict that further searches for microlensing events will see a large number of events corresponding to masses of less than 0.07 solar masses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Trimble, V. A. Rev. Astr. Astrophys. 25, 425–472 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Fich, M. & Tremaine, S. A. Rev. Astr. Astrophys. 29, 409–445 (1991).

    Article  ADS  Google Scholar 

  3. Alcock, C. et al. Nature 365, 621–623 (1993).

    Article  ADS  Google Scholar 

  4. Aubourg, E. et al. Nature 365, 623–625 (1993).

    Article  ADS  Google Scholar 

  5. Kroupa, P., Tout, C. A. & Gilmore, G. Mon. Not. R. astr. Soc. 262, 545–587 (1993).

    Article  ADS  Google Scholar 

  6. Tinney, C. G., Mould, J. R. & Reid, I. N. Astrophys. J. 396, 173–177 (1992).

    Article  ADS  Google Scholar 

  7. Comeron, F., Rieke, G. H., Burrows, A. & Rieke, M. J. Astrophys. J. 416, 185–203 (1993).

    Article  ADS  Google Scholar 

  8. Richer, H. B. & Fahlman, G. G. Nature 358, 383–386 (1992).

    Article  ADS  Google Scholar 

  9. Cowie, L. L. & Songaila, A. Proc. natn. Acad. Sci. U.S.A. 90, 4867–4870 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Songaila, A., Cowie, L. L., Hu, E. M. & Gardner, J. P. Astrophys. J. Suppl. Ser. (in the press).

  11. Hodapp, K.-W., Rayner, J. & Irwin, E. Publs. astr. Soc. Pacif. 104, 441–451 (1992).

    Article  ADS  Google Scholar 

  12. Leggett, S. K. Astrophys. J. Suppl. Ser. 82, 351–394 (1992).

    Article  ADS  Google Scholar 

  13. Hu, E. M. & Ridgway, S. E. Astr. J. 107, 1303–1306 (1994).

    Article  ADS  Google Scholar 

  14. Becklin, E. E. & Zuckerman, B. Nature 336, 656–658 (1988).

    Article  ADS  Google Scholar 

  15. Tinney, C. G., Mould, J. R. & Reid, I. N. Astr. J. 105, 1045–1059 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Burrows, A., Hubbard, W. B. & Lunine, J. I. Astrophys. J. 345, 939–959 (1989).

    Article  ADS  Google Scholar 

  17. Burrows, A., Hubbard, W. B., Saumon, D. & Lunine, J. I. Astrophys. J. 406, 158–171 (1993).

    Article  ADS  Google Scholar 

  18. Saumon, D., Bergeron, P., Lunine, J. I., Hubbard, W. B. & Burrows, A. Astrophys. J. 424, 333–344 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Nelson, L. A., Rappaport, S. & Joss, P. C. Astrophys. J. 404, 723–733 (1993).

    Article  ADS  Google Scholar 

  20. Sahu, K. C. Nature 370, 275–276 (1994).

    Article  ADS  Google Scholar 

  21. Elias, J. H., Frogel, J. A., Matthews, K. & Neugebauer, G. Astr. J. 87, 1029–1034 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Landolt, A. U. Astr. J. 104, 340–371 (1992).

    Article  ADS  Google Scholar 

  23. Bessell, M. S. & Brett, J. M. Publs astr. Soc. Pacif. 100, 1134–1152 (1988).

    Article  ADS  Google Scholar 

  24. Bessell, M. S. Publs. astr. Soc. Pacif. 102, 1181–1199 (1990).

    Article  ADS  Google Scholar 

  25. Bessell, M. S. Astr. J. 101, 662–676 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Wainscoat, R. J. & Cowie, L. L. Astr. J. 103, 332–337 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, E., Huang, JS., Gilmore, G. et al. An upper limit on the density of low-mass stars in the Galactic halo. Nature 371, 493–495 (1994). https://doi.org/10.1038/371493a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371493a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing