Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of fold-and-thrust belts on Venus by thick-skinned deformation

Abstract

ON Venus, fold-and-thrust belts—which accommodate large-scale horizontal crustal convergence—are often located at the margins of kilometre-high plateaux1–5. Such mountain belts, typically hundreds of kilometres long and tens to hundreds of kilometres wide, surround the Lakshmi Planum plateau in the Ishtar Terra highland (Fig. 1). In explaining the origin of fold-and-thrust belts, it is important to understand the relative importance of thick-skinned deformation of the whole lithosphere and thin-skinned, large-scale overthrusting of near-surface layers. Previous quantitative analyses of mountain belts on Venus have been restricted to thin-skinned models6–8, but this style of deformation does not account for the pronounced topographic highs at the plateau edge. We propose that the long-wavelength topography of these venusian fold-and-thrust belts is more readily explained by horizontal shortening of a laterally heterogeneous lithosphere. In this thick-skinned model, deformation within the mechanically strong outer layer of Venus controls mountain building. Our results suggest that lateral variations in either the thermal or mechanical structure of the interior provide a mechanism for focusing deformation due to convergent, global-scale forces on Venus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Campbell, D. B., Head, J. W., Harmon. J. K. & Hine, A. A. Science 221, 647–664 (1983).

    Article  ADS  Google Scholar 

  2. Crumpler, L. S., Head, J. W. & Campbell, D. B. Geology 14, 1031–1034 (1986).

    Article  ADS  Google Scholar 

  3. Head, J. W. Geology 18, 99–102 (1990).

    Article  ADS  Google Scholar 

  4. Solomon, S. C. et al. Science 252, 297–312 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Solomon, S. C. et al. J. geophys. Res. 97, 13199–13255 (1992).

    Article  ADS  Google Scholar 

  6. Vorder Bruegge, R. W. & Fletcher, R. C. Lunar planet. Sci. Conf. 21, 1278–1279 (1990).

    ADS  Google Scholar 

  7. Suppe, J. & Conners, C. J. geophys. Res. 97, 13545–13561 (1992).

    Article  ADS  Google Scholar 

  8. Williams, C. A., Conners, C., Dahlen, F. A., Price, E. J. & Suppe, J. J. geophys. Res. 99, 19947–19974 (1994).

    Article  ADS  Google Scholar 

  9. Price, R. A. in Thrust and Nappe Tectonics (eds McClay, K. R. & Price, N. J.) 427–448 (Geol. Soc., London. 1981).

    Google Scholar 

  10. Cook, F. A. et al. Geology 7, 563–567 (1979).

    Article  ADS  Google Scholar 

  11. Harris, L. & Bayer, K. C. Geology 7, 568–572 (1979).

    Article  ADS  Google Scholar 

  12. Burchfiel, B. C. et al. Geology 17, 448–452 (1989).

    Article  Google Scholar 

  13. Burchfiel, B. C. & Royden, L. H. Eclogae geol. Helv. 84, 599–629 (1991).

    Google Scholar 

  14. Davis, D., Suppe, J. & Dahlen, F. A. J. geophys. Res. 88, 1153–1172 (1983).

    Article  ADS  Google Scholar 

  15. Hoffman, P. F. in Geology of North America—An Overview, Decade of North American Geology (eds Bally, A. W. & Palmer, A. R.) 447–512 (Geol. Soc. Am., Denver, 1989).

    Book  Google Scholar 

  16. Munoz, J. A., Martinez, A. & Verges, J. J. struct. Geol. 8, 399–406 (1986).

    Article  ADS  Google Scholar 

  17. Phillips, R. J. & Hansen, V. L. Rev. Earth planet. Sci. 22, 597–654 (1994).

    Article  ADS  Google Scholar 

  18. Hansen, V. Lunar Planet. Sci. Conf. 23, 478–479 (1992).

    ADS  Google Scholar 

  19. Kuala, W. M. et al. J. geophys. Res. 97, 16085–16120 (1992).

    Article  ADS  Google Scholar 

  20. Keep, M. & Hansen, V. L. J. geophys. Res. 99, 26015–26028 (1994).

    Article  ADS  Google Scholar 

  21. Keep, M. & Hansen, V. Lunar planet Sci. Conf. 25, 681–682 (1994).

    ADS  Google Scholar 

  22. Hansen, V. L. & Phillips, R. J. Geology 23, 292–296 (1995).

    Article  ADS  Google Scholar 

  23. Grimm, R. E. & Phillips, R. J. J. geophys. Res. 96, 8305–8324 (1991).

    Article  ADS  Google Scholar 

  24. Bathe, K.-J. & Wilson, E. L. Numerical Methods in Finite Element Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1976).

    MATH  Google Scholar 

  25. Zuber, M. T. & Parmentier, E. M. J. geophys. Res. (in the press).

  26. Chen, Y. & Morgan, W. J. J. geophys. Res. 95, 17583–17604 (1990).

    Article  ADS  Google Scholar 

  27. Desai, C. S. & Abel, J. F. Introduction to the Finite Element Method (Van Nostrand Reinhold, New York, 1972).

    MATH  Google Scholar 

  28. Bindschadler, D. L., Schubert, G. & Kuala, W. M. Geophys. Res. Lett. 17, 1345–1348 (1990).

    Article  ADS  Google Scholar 

  29. Lenardic, A., Kaula, W. M. & Bindschadler, D. L. J. geophys. Res. 98, 18697–18705 (1993).

    Article  ADS  Google Scholar 

  30. Namiki, N. & Solomon, S. C. J. geophys. Res. 98, 15025–15031 (1993).

    Article  ADS  Google Scholar 

  31. Zuber, M. T. J. geophys. Res. 92, E541–E551 (1987).

    Article  ADS  Google Scholar 

  32. Mackwell, S. J., Zimmerman, M. E., Kohlstedt, D. L. & Scherber, D. S. in Proc. 35th US Symp. on Rock Mechanics (eds Daemen, J. J. K. & Schultz, R. A.) 207–214 (Balkema, Lake Tahoe, NV, 1995).

    Google Scholar 

  33. Hansen, V. L. & Phillips, R. J. Lunar planet. Sci. Conf. 24, 603–604 (1993).

    ADS  Google Scholar 

  34. Zuber, M. T. Lunar planet. Sci. Conf. 25, 1575–1578 (1994).

    ADS  Google Scholar 

  35. Vorder Bruegge, R. W. & Head, J. W. Geology 19, 885–888 (1991).

    Article  ADS  Google Scholar 

  36. Banerdt, W. B. & Golombek, M. P. J. geophys. Res. 93, 4759–4772 (1988).

    Article  ADS  Google Scholar 

  37. Zuber, M. T. & Parmentier, E. M. Icarus 85, 290–308 (1990).

    Article  ADS  Google Scholar 

  38. Kono, M., Fukao, Y. & Yamamoto, A. J. geophys. Res. 94, 3891–3905 (1989).

    Article  ADS  Google Scholar 

  39. Masek, J., Isacks, B. L., Gubbels, T. L. & Fielding, E. J. J. geophys. Res. 99, 13941–13956 (1994).

    Article  ADS  Google Scholar 

  40. Ford, P. G. & Pettengill, G. H. J. geophys. Res. 97, 13103–13114 (1992).

    Article  ADS  Google Scholar 

  41. Parmentier, E. M. Lunar planet. Sci. Conf. 17, 648–649 (1986).

    ADS  Google Scholar 

  42. Grimm, R. E. J. geophys. Res. 99, 23163–23171 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuber, M., Parmentier, E. Formation of fold-and-thrust belts on Venus by thick-skinned deformation. Nature 377, 704–707 (1995). https://doi.org/10.1038/377704a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377704a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing