Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conversion of thrombin into an anticoagulant by protein engineering

Abstract

AT sites of vascular injury, thrombin interacts with multiple procoagulant substrates1–6 to mediate both fibrin clotting and platelet aggregation. But upon binding to thrombomodulin on the vascular endothelium, thrombin instead activates protein C, thereby functioning as an anticoagulant and attenuating clot formation7. Upon infusion in vivo, both the procoagulant and anticoagulant effects of thrombin were observed8,9. Preliminary studies indicating that thrombin's protein C activating and fibrinogen clotting activities could be dissociated by mutagenesis10 suggested to us that a thrombin variant that lacked procoagulant activity while retaining anti-coagulant function might be an attractive antithrombotic agent. Using protein engineering, we introduced a single substitution, E229A, that substantially shifted thrombin's specificity in favour of the anticoagulant substrate, protein C. In monkeys, this modified thrombin functioned as an endogenous protein C activator demonstrating dose-dependent, reversible anticoagulation without any indication of procoagulant activity. Notably, template bleeding times were not prolonged, suggesting a reduced potential for bleeding complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jackson, C. M. & Nemerson, Y. A. Rev. Biochem. 49, 765–811 (1980).

    Article  CAS  Google Scholar 

  2. Mann, K. G. & Lundblad, R. L. in Hemostasis and Thrombosis (eds Colman, R. W., Hirsh, J., Marder, V. J. & Salzman, E. W.) 148–161 (Lippincott, Philadelphia, PA, 1987).

    Google Scholar 

  3. Vu, T. K. H., Wheaton, V. I., Hung, D. T., Charo, I. & Coughlin, S. R. Nature 353, 674 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Lorand, L. & Radek, J. T. in Thrombin Structure and Function (ed. Berliner, L. J.) 257–270 (Plenum, Columbus, OH, 1992).

    Google Scholar 

  5. Gailani, D. & Broze, G. J. Jr Science 253, 909–912 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Mann, K. G., Jenny, R. J. & Krishnaswamy, S. A. Rev. Biochem. 57, 915–956 (1988).

    Article  CAS  Google Scholar 

  7. Esmon, C. T. Science 235, 1348–1352 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Comp, P. C., Jacocks, R. M., Ferrell, G. L. & Esmon, C. T. J. clin. Invest. 70, 127–134 (1982).

    Article  CAS  Google Scholar 

  9. Hanson, S. R. et al. J. clin. Invest. 92, 2003–2012 (1993).

    Article  CAS  Google Scholar 

  10. Wu, Q. et al. Proc. natn. Acad. Sci. U.S.A. 88, 6675–6779 (1991).

    Google Scholar 

  11. Tsiang, M. et al. J. biol. Chem. 270, 16854–16863 (1995).

    Article  CAS  Google Scholar 

  12. Stubbs, M. T. et al. Eur. J. Biochem. 206, 187–195 (1992).

    Article  CAS  Google Scholar 

  13. Banfield, D. K. & MacGillivray, R. T. A. Proc. natn. Acad. Sci. U.S.A. 89, 2779–2783 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Ni, F., Konishi, Y., Bullock, L. D., Rivetna, M. N. & Scheraga, H. A. Biochemistry 28, 3106–3119 (1989).

    Article  CAS  Google Scholar 

  15. Borowski, M., Furie, B. C., Goldsmith, G. H. & Furie, B. J. biol. Chem. 260, 9258–9264 (1985).

    Article  CAS  Google Scholar 

  16. Fenton, J. W., Fasco, M. J. & Stackrow, A. B. J. biol. Chem. 252, 3587–3598 (1977).

    Article  CAS  Google Scholar 

  17. Tsiang, M. et al. J. biol. Chem. 270, 19370–19376 (1995).

    Article  CAS  Google Scholar 

  18. Higgins, D. L. J. biol. Chem. 258, 9276–9282 (1983).

    Article  CAS  Google Scholar 

  19. Graycar, T. P. & Estell, D. A. J. cell. Biochem. 11c (suppl.), 234 (1987).

    Google Scholar 

  20. Tsiang, M., Lentz, S. R. & Sadler, J. E. J. biol. Chem. 267, 6164–6170 (1992).

    Article  CAS  Google Scholar 

  21. Owen, W. G. & Esmon, C. T. J. biol. Chem. 256, 5532–5535 (1981).

    Article  CAS  Google Scholar 

  22. Ye, J. et al. J. biol. Chem. 269, 17965–17970 (1994).

    Article  CAS  Google Scholar 

  23. Dang, Q. D. et al. Proc. natn. Acad. Sci. U.S.A. 92, 5977–5981 (1995).

    Article  ADS  CAS  Google Scholar 

  24. National Academy of Sciences Guide for Care and Use of Laboratory Animals 85–23 (National Institutes of Health, Washington DC, 1985).

  25. Orthner, C. L., Kolen, B. & Drohan, W. N. Thromb. Haemostasis 69, 441–447 (1993).

    Article  CAS  Google Scholar 

  26. Gruber, A. & Griffin, J. H. Blood 79, 2340–2348 (1992).

    Article  CAS  Google Scholar 

  27. Gruber, A. et al. Circulation 84, 2454–2462 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, C., Coutré, S., Tsiang, M. et al. Conversion of thrombin into an anticoagulant by protein engineering. Nature 378, 413–416 (1995). https://doi.org/10.1038/378413a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378413a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing