Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visual cortical mechanisms detecting focal orientation discontinuities

Abstract

NEURONS in the primary visual cortex (VI) respond in well defined ways to stimuli within their classical receptive field, but these responses can be modified by stimuli overlying the surrounding area1–7. For example patch-suppressed cells respond to gratings of a specific orientation within their classical receptive field, but the response diminishes if the grating is expanded to cover the surrounding area1–7. We report here more complex effects in many such cells. When stimulated at their optimal orientation, introducing a surrounding field at a significantly different (for example, orthogonal) orientation enhanced their output by both a disinhibi-tory mechanism and an active facilitatory mechanism producing'supra-optimal' responses. Importantly, some cells responded well if the orientations of centre and surround stimuli were swapped. The output reflected the discontinuity because neither stimulus component alone was effective. Under these stimulus conditions simultaneously recorded cells with orthogonally oriented receptive fields showed correlated firing consistent with neuronal binding to the configuration. We propose a mechanism integrating orientation-dependent information over adjacent areas of visual space to represent focal orientation discontinuities such as junctions or corners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maffei, L. & Fiorentini, A. Vision Res. 16, 1131–1139 (1976).

    Article  CAS  Google Scholar 

  2. Fries, W., Albus, K. & Creutzfeldt, O. D. Vision Res. 17, 1001–1008 (1977).

    Article  CAS  Google Scholar 

  3. Nelson, J. I. & Frost, B. J. Brain Res. 139, 359–365 (1978).

    Article  CAS  Google Scholar 

  4. Gilbert, C. D. & Wiesel, T. N. Vision Res. 30, 1689–1701 (1990).

    Article  CAS  Google Scholar 

  5. DeAngelis, G. C., Robson, J. G., Ohzawa, I. & Freeman, R. D. J. Neurophysiol. 68, 144–163 (1992).

    Article  CAS  Google Scholar 

  6. Grinvald, A., Lieke, E. E., Frostig, R. D. & Hildesheim, R. J. Neurosci. 14, 2545–2568 (1994).

    Article  CAS  Google Scholar 

  7. Born, R. T. & Tootell, R. B. H. Proc. natn. Acad. Sci. U.S.A. 88, 7071–7075 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Sillito, A. M. J. Physiol. 273, 791–803 (1977).

    Article  CAS  Google Scholar 

  9. Orban, G. A., Kato, H. & Bishop, P. O. J. Neurophysiol. 42, 818–832 (1979).

    Article  CAS  Google Scholar 

  10. Orban, G. A., Kato, H. & Bishop, P. O. J. Neurophysiol. 42, 833–849 (1979).

    Article  CAS  Google Scholar 

  11. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 6, 1160–1170 (1986).

    Article  CAS  Google Scholar 

  12. Abeles, M. J. Neurosci. Meth. 5, 317–325 (1982).

    Article  CAS  Google Scholar 

  13. Abeles, M. & Gerstein, G. L. J. Neurophysiol. 60, 909–924 (1988).

    Article  CAS  Google Scholar 

  14. Palm, G., Aertsen, A. M. H. J. & Gerstein, G. L. Biol. Cybern. 59, 1–11 (1988).

    Article  CAS  Google Scholar 

  15. Gray, C. M., König, P., Engel, A. K. & Singer, W. Nature 338, 334–337 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Engel, A. K., König, P., Gray, C. M. & Singer, W. Eur. J. Neurosci. 2, 588–606 (1990).

    Article  Google Scholar 

  17. Gray, C. M., Engel, A. K., König, P. & Singer, W. Eur. J. Neurosci. 2, 607–619 (1990).

    Article  Google Scholar 

  18. Bergen, J. R. & Julesz, B. Nature 303, 696–698 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Bergen, J. R. & Julesz, B. IEEE Trans. Syst. M13, 857–863 (1983).

    Google Scholar 

  20. Keeble, D. R. T., Kingdom, F. A. A., Moulda, B. & Morgan, M. J. Vision Res. 35, 1991–2006 (1995).

    Article  CAS  Google Scholar 

  21. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 28, 229–287 (1965).

    Article  CAS  Google Scholar 

  22. DeAngelis, G. C., Freeman, R. D. & Ohzawa, I. J. Neurophysiol. 71, 347–374 (1994).

    Article  CAS  Google Scholar 

  23. Knierim, J. J. & Van Essen, D. C. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  Google Scholar 

  24. Sillito, A. M., Cudeiro, J. & Murphy, P. C. Expl Brain Res. 93, 6–16 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slllito, A., Grieve, K., Jones, H. et al. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995). https://doi.org/10.1038/378492a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378492a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing