Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photocurrent generation in metal bisphosphonate multilayer thin films

Abstract

ATTEMPTS to mimic the highly efficient process of photosynthesis1–3 are of considerable interest, the goal being to design artificial systems for the efficient conversion of solar energy into chemical or electrical energy4–14. In both natural and artificial systems, the underlying process is photoinduced charge separation, typically involving a redox reaction between a photoexcited donor molecule and an acceptor molecule. Through careful choice of the molecular arrangement, and the redox potentials of the donors, intermediate charge carriers and acceptors, it is possible to minimize the reverse electron transfer process and thereby obtain stable photoinduced charge separation. In this context, photochemical electron acceptors based on methylviologen and its derivatives have been widely studied5,6,8–12,14–19. Here we describe the synthesis and characterization of metal biphosphonate multilayer thin films composed of viologen-based acceptor layers and donor layers of p-phenylenediamine. Our method of film growth provides control over both the structure and composition of the multilayer films, leading to efficient photoinduced charge separation and directional electron transport. These films generate photocurrents when irradiated with ultraviolet and visible light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Deisenhofer, J. & Norris, J. R. (eds) The Photosynthetic Reaction Center (Academic, San Diego, 1993).

  2. Barker, J. (ed) The Photosystems: Structure, Function and Molecular Biology (Elsevier, New York, 1992).

  3. Michel, H. & Deisenhofer, J. Pure appl. Chem. 60, 953–958 (1988).

    Article  CAS  Google Scholar 

  4. Hidalgo-Luangdilok, C. & Bocarsly, A. B. Inorg. Chem. 29, 2894–2900 (1990).

    Article  CAS  Google Scholar 

  5. Grätzel, M. Nature 366, 206–207 (1993).

    Article  ADS  Google Scholar 

  6. Fujihira, M. in Photophysical Processes in Organized Molecular Systems (ed. Honda, K.) 463–482 (Elsevier, New York, 1991).

    Book  Google Scholar 

  7. Fujihira, M., Kubota, T. & Tetsuo, O. J. Electronanalyt. Chem. 119, 379–387 (1981).

    Article  CAS  Google Scholar 

  8. Bard, A. J. & Fox, M. A. Acct. chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  9. Brugger, P.-A. & Grätzel, M. J. Am. chem. Soc. 102, 2461–2463 (1980).

    Article  Google Scholar 

  10. Baral, S. & Fendler, J. H. in Photoinduced Electron Transfer Part B (eds Fox, M. A. & Chanon, M.) 541–598 (Elsevier, New York, 1988).

    Google Scholar 

  11. Kalyanasundaram, K. & Grätzel, M. Coord. Chem. Rev. 69, 57–125 (1986).

    Article  Google Scholar 

  12. O'Regan, B. & Grätzel, M. Nature 353, 737–740 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Rong, D., Yeong, I. K. & Mallouk, T. E. Inorg. Chem. 29, 1531–1535 (1990).

    Article  CAS  Google Scholar 

  14. Yao, G.-J., Onikubo, T. & Kaneko, M. Electrochimica Acta 38, 1093–1096 (1993).

    Article  CAS  Google Scholar 

  15. Snover, J. L. & Thompson, M. E. J. Am. chem. Soc. 116, 765–766 (1994).

    Article  CAS  Google Scholar 

  16. Ungashe, S. B., Wilson, W. L., Katz, H. E., Scheller, G. R. & Putvinski, T. M. J. Am. chem. Soc. 114, 8717–8719 (1992).

    Article  CAS  Google Scholar 

  17. Salama, A., Ottolenghi, M. & Avnir, D. Nature 355, 240–242 (1992).

    Article  ADS  Google Scholar 

  18. Yonemoto, E. H. et al. J. Am. chem. Soc. 116, 10557–10563 (1994).

    Article  CAS  Google Scholar 

  19. Vermeulen, L. A. & Thompson, M. E. Nature 358, 656–658 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Snover, J. L., Byrd, H., Suponeva, E. P. & Thompson, M. E. Chem. Mater. (submitted).

  21. Yang, H. C. et al. J. Am. chem. Soc. 115, 11855–11862 (1993).

    Article  CAS  Google Scholar 

  22. Mallouk, T. E. & Harrison, D. J. in Interfacial Design and Chemical Sensing (eds Mallouk, T. E. & Harrison, D. J.) (ACS Symp. Ser. No. 561, (American Chemical Soc,, Washington DC, 1994).

    Book  Google Scholar 

  23. Cao, G., Hong, H.-G. & Mallouk, T. E. Acct. chem. Res. 25, 420–427 (1992).

    Article  CAS  Google Scholar 

  24. Vermeulen, L. A., Snover, J. L., Sapochak, L. S. & Thompson, M. E. J. Am. chem. Soc. 115, 11767–11774 (1993).

    Article  CAS  Google Scholar 

  25. Lewis, N. S. & Bocarsly, A. B. in Semiconductor Electrodes (ed. Finklea, H. O.) 80–119 (Elsevier, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrd, H., Suponeva, E., Bocarsly, A. et al. Photocurrent generation in metal bisphosphonate multilayer thin films. Nature 380, 610–612 (1996). https://doi.org/10.1038/380610a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380610a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing