Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determination of olivine cooling rates from metal-cation ordering

Abstract

THE mineral olivine—(Fe,Mg,Mn)2SiO4—is the dominant phase in the Earth's upper mantle, and is also present in a wide range of igneous rocks. Metal cations in olivine crystals are partitioned between two structurally distinct octahedral sites, a property which could in principle be used to obtain important information regarding the thermal history of the host rock. But attempts to establish the temperature and pressure dependence of cation ordering, mainly from the room-temperature structures of samples that have been annealed and quenched1–3, have yielded contradictory information. In fact, recent studies have shown that considerable re-ordering occurs during the quenching process4,5, and thus cation ordering is unlikely to be representative of high-temperature equilibration. Here we present a new model of the thermodynamics and kinetics of metal partitioning in olivine, derived from in situ neutron-diffraction measurements of cation ordering in the synthetic olivine (Fe0.5Mn0.5)2SiO4. Our results suggest that the room-temperature structure of a quenched olivine reflects the rate at which the mineral cooled. The extension of this approach to common rock-forming olivines should provide a valuable 'geospeedometer' for determining the cooling rates of rocks that have cooled relatively rapidly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Virgo, D. & Hafner, S. S. Earth planet. Sci. Lett. 14, 305–312 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Princivalle, F. Miner. Petrol. 43, 121–129 (1990).

    Article  CAS  Google Scholar 

  3. Ottonello, G., Princivalle, F. & Della Giusta, A. Phys. Chem. Miner. 17, 301–312 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Artioli, G., Rinaldi, R., Wilson, C. C. & Zanazzi, P. F. Am. Miner. 80, 197–200 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Henderson, C. M. B., Knight, K. S., Redfern, S. A. T. & Wood, B. J. Science 271, 1713–1715 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Seifert, F. A. & Virgo, D. Science 188, 1107–1109 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Ganguly, J. & Tazzoli, V. Am. Miner. 79, 930–937 (1994) .

    CAS  Google Scholar 

  8. Kroll, H., Schlenz, H. & Phillips, M. W. Phys. Chem. Miner. 21, 555–560 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Kroll, H. & Knitter, R. Am. Miner. 76, 928–941 (1991).

    CAS  Google Scholar 

  10. Huppert, H. E. & Sparks, R. S. J. Earth planet. Sci. Lett. 92, 397–405 (1989).

    Article  ADS  Google Scholar 

  11. Gibb, F. G. F. & Henderson, C. M. B. Contr. Miner. Petrol. 109, 538–545 (1992).

    Article  ADS  Google Scholar 

  12. Marsh, B. D. J. Petrol. 30, 479–530 (1989).

    Article  ADS  Google Scholar 

  13. Carpenter, M. A., Powell, R. & Salje, E. K. H. Am. Miner. 79, 1053–1067 (1994).

    CAS  Google Scholar 

  14. Carpenter, M. A. & Salje, E. K. H. Mineralog. Mag. 53, 483–504 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harrison, R. J. & Putnis, A. Am. Miner. (in the press).

  16. Shinno, I. J. Jap. Ass. Miner. Petrol, econ. Geol. 75, 343–352 (1980).

    Article  CAS  Google Scholar 

  17. Annersten, H., Adetunji, J. & Filippidis, A. Am. Miner. 69, 1110–1115 (1984).

    CAS  Google Scholar 

  18. Brown, G. E. Jr Rev. Miner. 5, 275–381 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redfern, S., Henderson, C., Wood, B. et al. Determination of olivine cooling rates from metal-cation ordering. Nature 381, 407–409 (1996). https://doi.org/10.1038/381407a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381407a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing