Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Convergent total synthesis of a tumour-associated mucin motif

Abstract

Synthetic glycoconjugates that mimic cell-surface tumour antigens (glycolipids or glycoproteins with unusual carbohydrate structural motifs) have been shown to trigger humoral responses in murine and human immune systems1,2,3. This raises the exciting possibility of inducing active immunity with fully synthetic carbohydrate vaccines, particularly if vaccine compounds can be synthesized that resemble the surface environment of transformed cells even more closely. Glycopeptides seem particularly suitable for this purpose. In contrast to most glycolipids and thecarbohydrates themselves, glycopeptides bind to major histocompatibility complex molecules, and, in favourable cases, can stimulate T cells and lead to the expression of receptors that recognize the carbohydrate part of a glycopeptide with high specificity4,5,6,7,8. The preparation of glycopeptides and glycoproteins remains, however, a difficult challenge9,10,11,12: earlier synthesis methods have been inefficient, and established cloning approaches that allow engineering of global glycopatterns produce only heterogeneous glycoproteins13. Here we report an efficient strategy of the synthesis of tumour-associated mucin glycopeptides with clustered trisaccharide glycodomains corresponding to the (2,6)-sialyl T antigen. Our approach involves construction of the complete glycodomain in the first stage, followed by convergent coupling to amino acid residues and subsequent incorporation of the glycosyl amino acid units into a peptide chain. This general strategy allows the assembly of molecules in which selected glycoforms can be incorporated at any desired position of the peptide chain. The resultant fully synthetic O-linked glycopeptide clusters are the closest homogeneous mimics of cell-surface mucins at present available, and so are promising compounds for the development of anticancer vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of α-O-linked glycopeptides and the synthetic strategy reported here.
Figure 2: Assembly of trisaccharide glycal and donors.
Figure 3: Glycopeptide assembly and deblocking of protecting groups.
Figure 4: Fragment assembly of glycoprotein 20.

Similar content being viewed by others

References

  1. Ragupathi, G. et al. Immunization of mice with a fully synthetic globo-H antigen results in antibodies against human cancer cells: A combined chemical–immunological approach to the fashioning of an anticancer vaccine Angew. Chem. Int. Edn Engl. 36, 125–128 (1997).

    Article  CAS  Google Scholar 

  2. Toyokuni, T. & Singhal, A. K. Synthetic carbohydrate vaccines based on tumor-associated antigens. Chem. Soc. Rev. 24, 231–242 (1995).

    Article  CAS  Google Scholar 

  3. Bilodeau, M. T. & Danishefsky, S. J. Glycals in organic synthesis: the evolution of compreshensive strategies for the assembly of oligosaccharides and glycoconjugates of biological consequence. Angew. Chem. Int. Edn Engl. 35, 1381–1419 (1996).

    Google Scholar 

  4. Deck, B., Elofsson, K., Kihlberg, J. & Unanue, E. E. Specificity of glycopeptide-specific T cells. J. Immunol. 155, 1074–1078 (1995).

    CAS  PubMed  Google Scholar 

  5. Haurum, J. S. et al. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J. Exp. Med. 180, 739–744 (1994).

    Article  CAS  Google Scholar 

  6. Mouritsen, S. et al. Attachment of oligosaccharides to peptide antigen profoundly affects binding to major histocompatibility complex class II molecules and peptide immunogenicity. Eur. J. Immunol. 24, 1066–1072 (1994).

    Article  CAS  Google Scholar 

  7. Sieling, P. A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Jenson, T. et al. Carbohydrate and peptide specificity of MHC Class II-restricted T cell hybridomas raised against an O-glycosylated self peptide. J. Immunol. 3769–3778 (1997).

  9. Bill, R. M. & Flitsch, S. L. Chemical and biological approaches to glycoprotein synthesis. Chem. Biol. 3, 145–149 (1996).

    Article  CAS  Google Scholar 

  10. Witte, K., Sears, P., Martin, K. & Wong, C.-H. Enzymatic glycoprotein synthesis: preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation. J. Am. Chem. Soc. 119, 2114–2118 (1997).

    Article  CAS  Google Scholar 

  11. Tsuda, T. & Nithimura, S.-I. Synthesis of an antifreeze glycoprotein analogue: efficient preparation of sequential glycopeptide polymers. J. Chem. Soc. Chem. Commun. 2779–2780 (1996).

  12. Nakahara, Y., Iijima, H. & Ogawa, T. in Synthetic Oligosaccharides, Indispensable Probes for the Life Sciences (ed. P. Kovác) 249–266 (ACS Symp. Ser. 560, ACS, Washington DC, (1994).

    Book  Google Scholar 

  13. Jenkins, N., Parekh, R. B. & James, D. C. Getting the glycosylation right: Implications for the biotechnology industry. Nature Biotechnol. 14, 975–981 (1996).

    Article  CAS  Google Scholar 

  14. Carlstedt, I. & Davies, J. R. Glycoconjugates facing the outside world. Biochem Soc. Trans. 25, 214–219 (1997).

    Article  CAS  Google Scholar 

  15. Finn, O. J. et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol. Rev. 145, 61–89 (1995).

    Article  CAS  Google Scholar 

  16. Fukuda, M., Carlsson, S. R., Klock, J. C. & Dell, A. Structures of Olinked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. J. Biol. Chem. 261, 12796–12806 (1986).

    CAS  PubMed  Google Scholar 

  17. Saitoh, O., Gallagher, R. E. & Fukuda, M. Expression of aberrant Oglycans attached to leukosialin in differentiation-deficient HL-60 cells. Cancer Res. 51, 2854–2862 (1991).

    CAS  PubMed  Google Scholar 

  18. Pallant, A. et al. Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16. Proc. Natl Acad. Sci. USA 86, 1328–1332 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Kunz, H. & Schultz, M. in Glycopeptides and Related Compounds (eds Large, D. G. & Warren, Ch. D.) 23 (Dekker, New York, (1997).

    Google Scholar 

  20. Paulsen, H. et al. New solid phase oligosaccharide synthesis on glycopeptides bound to a solid phase. J. Chem. Soc. Perkin Trans. 1 281–293 (1997).

  21. Liebe, B. & Kunz, H. Solid phase synthesis of a tumor-associated sialyl-Tn antigen glycopeptide with a partial sequence of the “tandem repeat” of the Muc-1 mucin. Angew. Chem. Int. Edn Engl. 36, 618–621 (1997).

    Article  CAS  Google Scholar 

  22. Qui, D. & Koganty, R. R. Mucin type glycopeptides: synthesis of core 2, core 6 and F1-α building blocks and some unexpected reactions. Tetrahedr. Lett. 38, 45–48 (1997).

    Article  Google Scholar 

  23. Elofsson, M., Salvador, L. A. & Kihlberg, J. Preparation of Tn and sialyl Tn building blocks used in Fmoc solid-phase synthesis of glycopeptide fragments from HIV gp120. Tetrahedron 53, 369–390 (1997).

    Article  CAS  Google Scholar 

  24. Szabo, L., Ramza, J., Langdon, C. & Polt, R. Stereoselective synthesis of Oserinyl/threonyl-2-acetamido-2-deoxy-α or β-glycosides. Carbohydr. Res. 274, 11–28 (1995).

    Article  CAS  Google Scholar 

  25. Martin, T. J., Brescello, R., Toepfer, A. & Schmidt, R. R. Synthesis of phosphites and phosphates of neuraminic acid and their glycosyl donor properties — convenient synthesis of GM3. Glycoconjugate J. 10, 16–25 (1993).

    Article  CAS  Google Scholar 

  26. Sim, M. M., Kondo, H. & Wong, C.-H. Synthesis and use of glycosyl phosphites: an effective route to glycosyl phosphates, sugar nucleotides and glycosides. J. Am. Chem. Soc. 115, 2260–2267 (1993).

    Article  CAS  Google Scholar 

  27. Schmidt, R. R. & Kinzy, W. Anomeric oxygen activation for glycoside synthesis. Adv. Carbohydr. Chem. Biochem. 50, 84–123 (1994).

    Google Scholar 

  28. Kondo, H. et al. Glycosyl phosphites as glycosylation reagents: Scope and mechanism. J. Org. Chem. 59, 864–867 (1994).

    Article  CAS  Google Scholar 

  29. Paulsen, H., Rauwald, W. & Weichert, U. Glycosidierung mit thioglycosiden von oligosacchariden zu segmenten von O-glycoproteinen. Liebigs Ann. Chem. 75–86 (1988).

  30. Iijima, H. & Ogawa, T. Synthesis of a mucin type O -glycosylated amino acid, β-Gal (1 → 3)-[α-Neu5Ac-(2 → 6)]-α-GalNac-(1 → 3)-Ser. Carbohydr. Res. 186, 95–106 (1989).

    Article  CAS  Google Scholar 

  31. Jiang, J., Li, W.-R. & Joullié, M. Selective removal of fluorenylmethoxycarbonyl (Fmoc) groups under mild conditions. Synth. Commun. 24, 187–195 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Danishefsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sames, D., Chen, XT. & Danishefsky, S. Convergent total synthesis of a tumour-associated mucin motif. Nature 389, 587–591 (1997). https://doi.org/10.1038/39292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39292

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing