Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction

Abstract

A new method is described for measuring motions of protein domains in their native environment on the physiological timescale. Pairs of cysteines are introduced into the domain at sites chosen from its static structure and are crosslinked by a bifunctional rhodamine. Domain orientation in a reconstituted macromolecular complex is determined by combining fluorescence polarization data from a small number of such labelled cysteine pairs. This approach bridges the gap between in vitro studies of protein structure and cellular studies of protein function and is used here to measure the tilt and twist of the myosin light-chain domain with respect to actin filaments in single muscle cells. The results reveal the structural basis for the lever-arm action of the light-chain domain of the myosin motor during force generation in muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bifunctional rhodamine labelling of RLC.
Figure 2: Polarization ratios P , x P and yP from single muscle fibres containing each of the four BR–RLCs.
Figure 3: Conformation of the myosin head (catalytic domain, red; heavy-chain residues 707–843, blue; regulatory and essential light chains, magenta and yellow, respectively) bound in rigor to the actin filament (brown, grey, green).
Figure 4: Mechanical and RLC-region orientation transients.
Figure 5: Tilt and twist of the RLC region.

Similar content being viewed by others

References

  1. Corrie, J. E. T., Craik, J. S. & Munasinghe, V. R. N. Ahomobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. Bioconjug. Chem. 9, 160–167 (1998).

    Article  CAS  Google Scholar 

  2. Reedy, M. K., Holmes, K. C. & Tregear, R. T. Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207, 1276–1280 (1965).

    Article  ADS  CAS  Google Scholar 

  3. Huxley, H. E. The mechanism of muscle contraction. Science 164, 1356–1366 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Huxley, A. F. Muscular contraction (review lecture) J. Physiol. (Lond.) 243, 1–43 (1974).

    Article  CAS  Google Scholar 

  5. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Atomic structure of the actin: DNase 1 complex. Nature 347, 37– 43 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44– 49 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Rayment, I.et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50– 58 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  Google Scholar 

  9. Rayment, I.et al. Structure of the actin–myosin complex and its implications for muscle contraction. Science 261, 58– 65 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Whittaker, M.et al. A35-å movement of smooth muscle myosin on ADP release. Nature 378, 748–753 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Holmes, K. C. The swinging lever arm hypothesis of muscle contraction. Curr. Biol. 7, R112–118 ( 1997).

    Article  CAS  Google Scholar 

  12. Cooke, R. Actomyosin interaction in striated muscle. Physiol. Rev. 77, 671–697 (1997).

    Article  CAS  Google Scholar 

  13. Goldman, Y. E. Wag the tail: structural dynamics of actomyosin. Cell 93, 1–4 (1998).

    Article  CAS  Google Scholar 

  14. Uyeda, T. Q. P., Abramson, P. D. & Spudich, J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl Acad. Sci. USA 93, 4459–4464 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Anson, M., Geeves, M. A., Kurzawa, S. E. & Manstein, D. J. Myosin motors with artificial lever arms. EMBO J. 15 , 6069–6074 (1996).

    Article  CAS  Google Scholar 

  16. Hopkins, S. C., Sabido-David, C., Corrie, J. E. T., Irving, M. & Goldman, Y. E. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. Biophys. J. 74, 3093– 3110 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Sabido-David, C.et al . Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres. J. Mol. Biol. 279, 387– 402 (1998).

    Article  CAS  Google Scholar 

  18. Baker, J. E., Brust-Mascher, I., Ramachandran, S., LaConte, L. E. W. & Thomas, D. D. Alarge and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc. Natl Acad. Sci. USA 95, 2944– 2949 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Dobbie, I.et al. Elastic bending and active tilting of myosin heads during muscle contraction. Nature 396, 383– 387 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Simmons, R. M. & Szent-Györgyi, A. G. Control of tension development in scallop muscle fibres with foreign regulatory light chains. Nature 286, 626– 628 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Moss, R. L., Giulian, G. G. & Greaser, M. L. Physiological effects accompanying removal of myosin LC2from skinned skeletal muscle fibers. J. Biol. Chem. 257, 8588–8591 ( 1982).

    CAS  PubMed  Google Scholar 

  22. Penzkofer, A. & Wiedmann, J. Orientation of transition dipole moments of rhodamine 6G determined by excited state absorption. Opt. Commun. 35, 81–86 ( 1980).

    Article  ADS  CAS  Google Scholar 

  23. Xie, X.et al. Structure of the regulatory domain of scallop myosin at 2.8 å resolution. Nature 368, 306– 312 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Jansco, A. & Szent-Györgyi, A. G. Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue. Proc. Natl Acad. Sci. USA 91, 8762– 8766 (1994).

    Article  ADS  Google Scholar 

  25. Cooke, R., Crowder, M. S. & Thomas, D. D. Orientation of spin labels attached to cross-bridges in contracting muscle fibers. Nature 300, 776–778 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Huxley, H. E. & Kress, M. Crossbridge behaviour during muscle contraction. J. Muscle Res. Cell Motil. 6, 153–161 (1985).

    Article  CAS  Google Scholar 

  27. Linari, M.et al. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin. Biophys. J. 74, 2459–2473 ( 1998).

    Article  ADS  CAS  Google Scholar 

  28. Dale, R. E.et al. Model-independent analysis of mobility and orientation of fluorescent probes in muscle fibers. Biophys. J. 76, 1606–1618 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Sabido-David, C.et al . Steady-state fluorescence polarization studies of the orientation of myosin regulatory light chains in single skeletal muscle fibers using pure isomers of iodoacetamidotetramethylrhodamine. Biophys. J. 74, 3083–3092 (1998).

    Article  CAS  Google Scholar 

  30. Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. Nature 233, 533– 538 (1971).

    Article  ADS  CAS  Google Scholar 

  31. Irving, M.et al. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375, 688–691 ( 1995).

    Article  ADS  CAS  Google Scholar 

  32. Lombardi, V.et al. Elastic distortion of myosin heads and repriming of the working stroke in muscle. Nature 374, 553– 555 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Irving, M., Lombardi, V., Piazzesi, G. & Ferenczi, M. A. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature 357, 156– 158 (1992).

    Article  ADS  CAS  Google Scholar 

  34. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 ( 1995).

    Article  ADS  CAS  Google Scholar 

  35. Ishijima, A.et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 ( 1998).

    Article  CAS  Google Scholar 

  36. Warshaw, D. M.et al . Myosin conformational states determined by single fluorophore polarization. Proc. Natl Acad. Sci. USA 95, 8034–8039 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Rowe, T. & Kendrick-Jones, J. Chimeric myosin regulatory light chains identify the subdomain responsible for regulatory function. EMBO J. 11, 4715–4722 ( 1992).

    Article  CAS  Google Scholar 

  38. Oki, M. Recent advances in atropisomerism. Top. Stereochem. 14, 1–79 (1983).

    CAS  Google Scholar 

  39. Ling, N., Shrimpton, C., Sleep, J., Kendrick-Jones, J. & Irving, M. Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle. Biophys. J. 70, 1836–1846 ( 1996).

    Article  ADS  CAS  Google Scholar 

  40. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in Fortran: The Art of Scientific Computing2nd edn (Cambridge Univ. Press, Cambridge, UK, (1992).

    MATH  Google Scholar 

  41. Chantler, P. D. & Szent-Györgyi, A. G. Regulatory light-chains and scallop myosin: full dissociation, reversibility and co-operative effects. J. Mol. Biol. 138, 473–492 (1980).

    Article  CAS  Google Scholar 

  42. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  43. Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  44. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK MRC, Wellcome Trust, NIH, MDA and AHA. We thank S. Howell for mass spectrometric analyses, M. Hirshberg and I. Dobbie for help with molecular graphics, and V. R. N. Munasinghe for technical support with BR-I2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Irving.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrie, J., Brandmeier, B., Ferguson, R. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999). https://doi.org/10.1038/22704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22704

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing