Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neurotrophin-evoked rapid excitation through TrkB receptors

Abstract

Neurotrophins are a family of structurally related proteins that regulate the survival, differentiation and maintenance of function of different populations of peripheral and central neurons1,2,3. They are also essential for modulating activity-dependent neuronal plasticity4,5,6,7. Here we show that neurotrophins elicit action potentials in central neurons. Even at low concentrations, brain-derived neurotrophic factor (BDNF) excited neurons in the hippocampus, cortex and cerebellum. We found that BDNF and neurotrophin-4/5 depolarized neurons just as rapidly as the neurotransmitter glutamate, even at a more than thousand-fold lower concentration. Neurotrophin-3 produced much smaller responses, and nerve growth factor was ineffective. The neurotrophin-induced depolarization resulted from the activation of a sodium ion conductance which was reversibly blocked by K-252a, a protein kinase blocker which prefers tyrosine kinase Trk receptors8. Our results demonstrate a very rapid excitatory action of neurotrophins, placing them among the most potent endogenous neuro-excitants in the mammalian central nervous system described so far.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excitatory action of BDNF in central neurons.
Figure 2: Dose-dependence of BDNF-evoked neuronal firing in hippocampal CA1 pyramidal neurons.
Figure 3: TrkB requirement for the NT-mediated excitation of hippocampal CA1 pyramidal neurons.
Figure 4: Mechanism underlying the BDNF-induced inward current in hippocampal CA1 pyramidal neurons.

Similar content being viewed by others

References

  1. Lewin,G. R. & Barde,Y. A. Physiology of the neutrophins. Annu. Rev. Neurosci. 19, 289–317 (1996).

    CAS  PubMed  Google Scholar 

  2. Bothwell,M. Functional interactions of neurotrophins and neurotrophin receptors. Annu. Rev. Neurosci. 18, 223–253 (1995).

    CAS  PubMed  Google Scholar 

  3. Ibanez,C. F. Emerging themes in structural biology of neurotrophic factors. Trends Neurosci. 21, 438–444 (1998).

    CAS  PubMed  Google Scholar 

  4. Schuman,E. M. Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109 (1999).

    CAS  Google Scholar 

  5. Bonhoeffer,T. Neurotrophins and activity-dependent development of the neocortex. Curr. Opin. Neurobiol. 6, 119–126 (1996).

    CAS  Google Scholar 

  6. Cellerino,A. & Maffei,L. The action of neurotrophins in the development and plasticity of the visual cortex [published erratum in Prog. Neurobiol. 50, 333 (1996)]. Prog. Neurobiol. 49, 53–71 (1996).

    Google Scholar 

  7. Thoenen,H. Neurotrophins and neuronal plasticity. Science 270, 593–598 (1995).

    ADS  CAS  Google Scholar 

  8. Knüsel,B. & Hefti,F. K-252 compounds: modulators of neurotrophin signal transduction. J. Neurochem. 59, 1987–1996 (1992).

    PubMed  Google Scholar 

  9. Edwards,F. A., Konnerth,A., Sakmann,B. & Takahashi,T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).

    CAS  Google Scholar 

  10. Ip,N. Y., Li,Y., Yancopoulos,G. D. & Lindsay,R. M. Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J. Neurosci. 13, 3394–3405 (1993).

    CAS  PubMed  Google Scholar 

  11. Kang,H. & Schuman,E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 (1995).

    ADS  CAS  Google Scholar 

  12. Figurov,A., Pozzo-Miller,L. D., Olafsson,P., Wang,T. & Lu,B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).

    ADS  CAS  Google Scholar 

  13. Lessmann,V., Gottmann,K. & Heumann,R. BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurones. Neuroreport 6, 21–25 (1994).

    CAS  PubMed  Google Scholar 

  14. Levine,E. S., Crozier,R. A., Black,I. B. & Plummer,M. R. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl Acad. Sci. USA 95, 10235–10239 (1998).

    ADS  CAS  PubMed  Google Scholar 

  15. Patterson,S. L. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145 (1996).

    CAS  Google Scholar 

  16. Suen,P. C. et al. Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-apsartate receptor subunit 1. Proc. Natl Acad. Sci. USA 94, 8191–8195 (1997).

    ADS  CAS  PubMed  Google Scholar 

  17. Canossa,M. et al. Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc. Natl Acad. Sci. USA 94, 13279–13286 (1997).

    ADS  CAS  PubMed  Google Scholar 

  18. Ringstedt,T., Lagercrantz,H. & Persson,H. Expression of members of the trk family in the developing postnatal rat brain. Brain Res. Dev. 72, 119–131 (1993).

    CAS  Google Scholar 

  19. Yan,Q. et al. Immunocytochemical localization of TrkB in the central nervous system of the adult rat [published erratum in J. Comp. Neurol. 382, 546–547 (1997)]. J. Comp. Neurol. 378, 135–157 (1997).

    Google Scholar 

  20. Berninger,B., Garcia,D. E., Inagaki,N., Hahnel,C. & Lindholm,D. BDNF and NT-3 induce intracellular Ca2+ elevation in hippocampal neurones. Neuroreport 4, 1303–1306 (1993).

    CAS  PubMed  Google Scholar 

  21. Barbacid,M. Neurotrophic factors and their receptors. Curr. Opin. Cell Biol. 7, 148–155 (1995).

    CAS  PubMed  Google Scholar 

  22. Merlio,J. P., Ernfors,P., Jaber,M. & Persson,H. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience 51, 513–532 (1992).

    CAS  PubMed  Google Scholar 

  23. Korte,M. et al. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl Acad. Sci. USA 93, 12547–12552 (1996).

    ADS  CAS  PubMed  Google Scholar 

  24. Berninger,B. & Poo,M. Fast actions of neurotrophic factors. Curr. Opin. Neurobiol. 6, 324–330 (1996).

    CAS  PubMed  Google Scholar 

  25. Rose,C. R. & Ransom,B. R. Regulation of intracellular sodium in cultured rat hippocampal neurones. J. Physiol. (Lond.) 499, 573–587 (1997).

    CAS  Google Scholar 

  26. Lohof,A. M., Ip,N. Y. & Poo,M. M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).

    ADS  CAS  PubMed  Google Scholar 

  27. Kahle,P., Barker,P. A., Shooter,E. M. & Hertel,C. p75 nerve growth factor receptor modulates p140trkA kinase activity, but not ligand internalization, in PC12 cells. J. Neurosci. Res. 38, 599–606 (1994).

    CAS  PubMed  Google Scholar 

  28. Blöchl,A. & Thoenen,H. Localization of cellular storage compartments and sites of constitutive and activity-dependent release of nerve growth factor (NGF) in primary cultures of hippocampal neurons. Mol. Cell Neurosci. 7, 173–190 (1996).

    PubMed  Google Scholar 

  29. Zhou,X. F. & Rush,R. A. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 74, 945–953 (1996).

    CAS  PubMed  Google Scholar 

  30. Goodman,L. J. et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol. Cell Neurosci. 7, 222–238 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Trautmann and E. Eilers for expert technical assistance and M. Ashdown for editorial assistance. This study was supported by a fellowship from the DFG to K.W.K. and by grants from the Deutsche Forschungsgemeinschaft and the Human Frontier Science Program to A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Konnerth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kafitz, K., Rose, C., Thoenen, H. et al. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921 (1999). https://doi.org/10.1038/44847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44847

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing