Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Redundant roles for the TFIID and SAGA complexes in global transcription

Abstract

The transcription factors TFIID and SAGA are multi-subunit complexes involved in transcription by RNA polymerase II1,2. TFIID and SAGA contain common TATA-binding protein (TBP)-associated factor (TAFII) subunits and each complex contains a subunit with histone acetyltransferase activity3. These observations have raised questions about whether the functions of the two complexes in vivo are unique or overlapping. Here we use genome-wide expression analysis to investigate how expression of the yeast genome depends on both shared and unique subunits of these two complexes. We find that expression of most genes requires one or more of the common TAFII subunits, indicating that the functions of TFIID and SAGA are widely required for gene expression. Among the subunits shared by TFIID and SAGA are three histone-like TAFIIs, which have been proposed to form a sub-complex and mediate a common function in global transcription. Unexpectedly, we find that the histone-like TAFIIs have distinct roles in expression of the yeast genome. Most importantly, we show that the histone acetylase components of TFIID and SAGA (TAFII145 and Gcn5) are functionally redundant, indicating that expression of a large fraction of yeast genes can be regulated through the action of either complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole-genome analysis of genes affected by the shared TAFIIs.
Figure 2: Expression of distinct sets of genes depends on individual subunits of SAGA.
Figure 3: TFIID and SAGA have compensatory functions at a large fraction of genes.

Similar content being viewed by others

References

  1. Hahn, S. The role of TAFs in RNA polymerase II transcription. Cell 95, 579–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, T. & Young, R. Regulation of gene expression by TBP-associated proteins. Genes Dev. 12, 1398– 1408 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Grant, P. et al. A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94, 45–53 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wodicka, L., Dong, H., Mittmann, M., Ho, M. H. & Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359 –1367 (1997).

    Article  CAS  Google Scholar 

  5. Moqtaderi, Z., Bai, Y., Poon, D., Weil, P. A. & Struhl, K. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383, 188–191 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Walker, S. S., Reese, J. C., Apone, L. M. & Green, M. R. Transcription activation in cells lacking TAFIIS. Nature 383, 185–188 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Walker, S. S., Shen, W. C., Reese, J. C., Apone, L. M. & Green, M. R. Yeast TAF(II)145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state. Cell 90, 607–614 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  8. Shen, W. & Green, M. Yeast TAF(II)145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90, 615–624 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Apone, L. M., Virbasius, C. -M. A., Reese, J. C. & Green, M. R. Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev. 10 , 2368–2380 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Apone, L. et al. Broad, but not universal, transcriptional requirement for yTAFII17, a histone H3-like TAFII present in TFIID and SAGA. Mol. Cell 2, 653–661 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Holstege, F. C. P. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Michel, B., Komarnitsky, P. & Buratowski, S. Histone-like TAFs are essential for transcription in vivo. Mol. Cell 2, 663– 673 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Moqtaderi, Z., Keaveney, M. & Struhl, K. The histone H3-like TAF is broadly required for transcription in yeast. Mol. Cell 2, 675– 682 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Natarajan, K., Jackson, B., Rhee, E. & Hinnebusch, A. yTAFII61 has a general role in RNA polymerase II transcription and is required by Gcn4p to recruit the SAGA coactivator complex. Mol. Cell 2, 683–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Sanders, S. L., Klebanow, E. R. & Weil, P. A. TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo. J. Biol. Chem. 274, 18847–18850 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Komarnitsky, P. B., Michel, B. & Buratowski, S. TFIID-specific yeast TAF40 is essential for the majority of RNA polymerase II-mediated transcription in vivo. Genes Dev. 13, 2484–2489 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Website accompanying this paper. http://web.wi.mit.edu/young/TFIID_SAGA

  18. Mizzen, C. A. et al. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261– 1270 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmann, A. et al. A histone octamer-like structure within TFIID. Nature 380, 356–359 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380, 316– 322 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Oelgeschlager, T., Chiang, C. M. & Roeder, R. G. Topology and reorganization of a human TFIID-promoter complex. Nature 382, 735– 738 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Horiuchi, J., Silverman, N., Pina, B., Marcus, G. & Guarente, L. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol. Cell. Biol. 17, 3220–3228 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roberts, S. M. & Winston, F. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 3206–3213 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roberts, S. M. & Winston, F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147, 451–465 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sterner, D. et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19, 86–98 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grant, P. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640– 1650 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Eberharter, A. et al. The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6621–6631 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Winston, F. & Sudarsanam, P. The SAGA of Spt proteins and transcriptional analysis in yeast: past, present, and future. Cold Spring Harb. Symp. Quant. Biol. 63, 553– 561 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Sudarsanam, P., Cao, Y., Wu, L., Laurent, B. & Winston, F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 18 , 3101–3106 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biggar, S. & Crabtree, G. Continuous and widespread roles for the Swi-Snf complex in transcription. EMBO J. 18 , 2254–2264 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Workman for helpful discussions. This work was supported by funds from the NIH. F.C.P.H. was supported by a fellowship from the Human Frontier Science Program and E.G.J. is a predoctoral fellow of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Young.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T., Causton, H., Holstege, F. et al. Redundant roles for the TFIID and SAGA complexes in global transcription . Nature 405, 701–704 (2000). https://doi.org/10.1038/35015104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015104

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing