Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A chiroselective peptide replicator

Abstract

The origin of homochirality in living systems is often attributed to the generation of enantiomeric differences in a pool of chiral prebiotic molecules1,2, but none of the possible physiochemical processes considered1,2,3,4,5,6,7 can produce the significant imbalance required if homochiral biopolymers are to result from simple coupling of suitable precursor molecules. This implies a central role either for additional processes that can selectively amplify an initially minute enantiomeric difference in the starting material1,8,9,10,11,12, or for a nonenzymatic process by which biopolymers undergo chiroselective molecular replication13,14,15,16. Given that molecular self-replication and the capacity for selection are necessary conditions for the emergence of life, chiroselective replication of biopolymers seems a particularly attractive process for explaining homochirality in nature13,14,15,16. Here we report that a 32-residue peptide replicator, designed according to our earlier principles17,18,19,20, is capable of efficiently amplifying homochiral products from a racemic mixture of peptide fragments through a chiroselective autocatalytic cycle. The chiroselective amplification process discriminates between structures possessing even single stereochemical mutations within otherwise homochiral sequences. Moreover, the system exhibits a dynamic stereochemical ‘editing’ function; in contrast to the previously observed error correction20, it makes use of heterochiral sequences that arise through uncatalysed background reactions to catalyse the production of the homochiral product. These results support the idea that self-replicating polypeptides could have played a key role in the origin of homochirality on Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Helical wheel diagram and peptide sequences employed in this study.
Figure 2: A schematic representation of the chiroselective replication cycles.
Figure 3: Rates of product formation with time.
Figure 4: Schematic representation of chiroselective coiled-coil formation processes and the corresponding experimental HPLC time traces.
Figure 5: Rates of production formation in time.
Figure 6: Schematic illustration of cross-catalytic networks established by heterochiral templates that help in the maintenance and amplification of homochiral products.

Similar content being viewed by others

References

  1. Bonner, W. A. The origin and amplification of biomolecular chirality. Origins Life Evol. Biosph. 21, 59–111 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Bada, J. L. Origins of homochirality. Nature 374, 594–595 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Bonner, W. A., Blair, N. E. & Dirbas, F. M. Experiments on the abiotic amplification of optical activity. Origins Life 11, 119–134 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Cronin, J. R. & Pizzarello, S. Enantiomeric excesses in meteoritic amino acids. Science 275, 951–955 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Kondepudi, D. K. & Nelson, G. W. Weak neutral currents and the origin of biomolecular chirality. Nature 314, 438–441 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Kondepudi, D. K., Kaufman, R. J. & Singh, N. Chiral symmetry breaking in sodium chlorate crystallization. Science 250, 975–977 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Weissbuch, I. et al. Spontaneous generation and amplification of optical activity in .alpha.-amino acids by enantioselective occlusion into centrosymmetric crystals of glycine. Nature 310, 161–164 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Frank, F. C. On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–463 (1953).

    Article  CAS  Google Scholar 

  9. Calvin, M. Chemical Evolution (Oxford Univ. Press, Oxford, 1969).

    Google Scholar 

  10. Girdard, C. & Kagan, H. B. Nonlinear effects in asymmetric synthesis and stereoselective reactions: ten years of investigation. Angew. Chem. Int. Edn Engl. 37, 2923–2959 (1998).

    Google Scholar 

  11. Soai, K., Shibata, T., Morioka, H. & Choji, K. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378, 767–768 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Siegel, J. S. Homochiral imperative of molecular evolution. Chirality 10, 24–27 (1998).

    Article  CAS  Google Scholar 

  13. Bolli, M., Micura, R. & Eschenmoser, A. Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2′,3′-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem. Biol. 4, 309–320 (1997).

    Article  CAS  Google Scholar 

  14. Joyce, G. F. et al. Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310, 602–604 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Schmidt, J. G., Nielsen, P. E. & Orgel, L. E. Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template. J. Am. Chem. Soc. 119, 1494–1495 (1997).

    Article  CAS  Google Scholar 

  16. Kozlov, I. A., Politis, P. K., Pitsch, S., Herdewijn, P. & Orgel, L. E. A highly enantio-selective hexitol nucleic acid template for nonenzymic oligoguanylate synthesis. J. Am. Chem. Soc. 121, 1108–1109 (1999).

    Article  CAS  Google Scholar 

  17. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Severin, K., Lee, D. H., Martinez, J. A. & Ghadiri, M. R. Peptide self-replication via template-directed ligation. Chem. Eur. J. 3, 1017–1024 (1997).

    Article  CAS  Google Scholar 

  19. Lee, D. H., Severin, K., Yokobayashi, Y. & Ghadiri, M. R. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390, 591–594 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Severin, K., Lee, D. H., Martinez, J. A., Vieth, M. & Ghadiri, M. R. Dynamic error correction in autocatalytic peptide networks. Angew. Chem. Int. Edn Engl. 37, 126–128 (1998).

    Article  CAS  Google Scholar 

  21. Li, T., Budt, K. H. & Kishi, Y. Influence of secondary structure (helical conformation) on stereoselectivity in peptide couplings. J. Chem. Soc. Chem. Commun. 24, 1817–1819 (1987).

    Article  Google Scholar 

  22. Case, M. A., Ghadiri, M. R., Mutz, M. W. & McLendon, G. L. Stereoselection in designed three-helix bundle metalloproteins. Chirality 10, 35–40 (1998).

    Article  CAS  Google Scholar 

  23. Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Krause, E., Bienert, M., Schmieder, P. & Wenshuh, H. The helix-destabilizing propensity scale of D-amino acids: the influence of side chain steric effects. J. Am. Chem. Soc. 122, 4865–4870 (2000).

    Article  CAS  Google Scholar 

  25. Rothemund, S. et al. Structure effects of double D-amino acid replacements: A nuclear magnetic resonance and circular dichroism study using amphipathic model helixes. Biochemistry 34, 12954–12962 (1995).

    Article  CAS  Google Scholar 

  26. Rothemund, S. et al. Peptide destabilization by two adjacent D-amino acids in single-stranded amphipathic alpha-helixes. Pept. Res. 9, 78–87 (1996).

    CAS  Google Scholar 

  27. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues A. Eschenmoser and L. Orgel for their helpful suggestions and critical review of this manuscript, and the NASA Astrobiology Institute for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saghatelian, A., Yokobayashi, Y., Soltani, K. et al. A chiroselective peptide replicator. Nature 409, 797–801 (2001). https://doi.org/10.1038/35057238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35057238

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing