Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for planet engulfment by the star HD82943

Abstract

Current models1,2 of the evolution of the known extrasolar planetary systems need to incorporate orbital migration and/or gravitational interactions among giant planets to explain the presence of large bodies close to their parent stars. These processes could also lead to planets being ingested by their parent stars, which would alter the relative abundances of elements heavier than helium in the stellar atmospheres. In particular, the abundance of the rare 6Li isotope, which is normally destroyed in the early evolution of solar-type stars3 but preserved intact in the atmospheres of giant planets, would be boosted substantially. 6Li has not hitherto been observed reliably in a metal-rich star4,5, where metallicity refers to the total abundance of elements heavier than helium. Here we report the discovery of 6Li in the atmosphere of the metal-rich solar-type star HD82943, which is known to have an orbiting giant planet. The presence of 6Li can probably be interpreted as evidence for a planet (or planets) having been engulfed by the parent star.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and computed profiles of two reference iron lines (top) and results of the χ2 tests (bottom).
Figure 2: Comparison of the observed (circles) and synthetic (continuous line) spectra corresponding to different 6Li/7Li ratios in our two stars (top) and results from the χ2 analysis (bottom).
Figure 3: The total lithium abundance of HD82943 (large filled circle) compared with unevolved stars of similar effective temperature (similar mass) for different ages and metallicities22,29.

Similar content being viewed by others

References

  1. Weidenschilling, S. J. & Marzari, F. Gravitational scattering as a possible origin for giant planets at small distances. Nature 384, 619–621 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Lin, D. N., Bodenheimer, P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Forestini, M. Low mass stars: Pre-main sequence evolution and nucleosynthesis. Astron. Astrophys. 285, 473–488 (1994).

    ADS  CAS  Google Scholar 

  4. Andersen, J., Gustafsson, B. & Lambert, D. L. The lithium isotope ratio in F and G stars. Astron. Astrophys. 136, 65–73 (1984).

    ADS  CAS  Google Scholar 

  5. Rebolo, R., Crivellari, L., Castelli, F., Foing, B. & Beckman, J. E. Lithium abundances and 7Li/6Li ratios in late-type population I field dwarfs. Astron. Astrophys. 166, 195–203 (1986).

    ADS  CAS  Google Scholar 

  6. Naef, D. et al. The CORALIE survey for southern extrasolar planets V. 4 new extrasolar planets. Astron. Astrophys. (in the press).

  7. Santos, N. C., Israelian, G. & Mayor, M. Chemical analysis of 8 recently discovered extra-solar planet host stars. Astron. Astrophys. 363, 228–238 (2000).

    ADS  CAS  Google Scholar 

  8. Smith, V. V., Lambert, D. & Nissen, P. E. Isotopic lithium abundances in nine halo stars. Astrophys. J. 506, 405–423 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Hobbs, L. M., Thorburn, J. A. & Rebull, L. M. Lithium isotope ratios in halo stars. III. Astrophys. J. 523, 797–804 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Nissen, P. E., Lambert, D., Primas, F. & Smith, V. V. Isotopic lithium abundances in five metal-poor disk stars. Astron. Astrophys. 348, 211–221 (1999).

    ADS  CAS  Google Scholar 

  11. Kurucz, R. L., Furenlid, I., Brault, J. & Testerman, L. Solar flux atlas from 296 to 1300 nm. NOAO Atlas 1 (Harvard Univ. Press, Cambridge, Massachusetts, 1984).

  12. Anders, E. & Grevesse, N. Abundances of the elements–meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Lambert, D., Smith, V. V. & Heath, J. Lithium in the barium stars. Publ. Astron. Soc. Pacif. 105, 568–573 (1989).

    Article  ADS  Google Scholar 

  14. Perryman, M. A. C. et al. The Hipparcos catalogue. Astron. Astrophys. Lett. 323, 49–52 (1997).

    ADS  Google Scholar 

  15. Ramaty, R., Tatischeff, V., Thibaud, J. P., Kozlovsky, B. & Mandzhavidize, N. 6Li from solar flares. Astrophys. J. Lett. 534, 207–210 (2000).

    Article  ADS  Google Scholar 

  16. Chaussidon, M. & Robert, F. Lithium nucleosynthesis in the sun inferred from the solar-wind 7Li/6Li ratio. Nature 402, 270–273 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Müller, E. A., Peytremann, E. & De La Reza, R. The solar lithium abundance. II. Solar Phys. 41, 53–65 (1975).

    Article  ADS  Google Scholar 

  18. Schaerer, D., Charbonnel, C., Meynet, G., Maeder, A. & Schaller, G. Grids of stellar models—Part four—from 0.8M to 120M at Z = 0.040. Astron. Astrophys. Suppl. 102, 339–342 (1993).

    ADS  CAS  Google Scholar 

  19. D'Antona, F. & Mazzitelli, I. New pre-main sequence tracks for M ≤ 2.5M as tests of opacities and convection models. Astrophys. J. Suppl. 90, 467–500 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Alexander, J. B. A possible source of lithium in the atmospheres of some red giants. Observatory 87, 238–240 (1967).

    ADS  CAS  Google Scholar 

  21. Ryan, S. G. The host stars of extrasolar planets have normal lithium abundances. Mon. Not. R. Astron. Soc. 316, L35–L39 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Balachandran, S. Lithium depletion and rotation in main-sequence stars. Astrophys. J. 354, 310–332 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Glass, B. P. Introduction To Planetary Geology (Cambridge Univ. Press, Cambridge, 1982).

    Google Scholar 

  24. Fields, B. D. & Olive, K. A. The evolution of 6Li in standard cosmic ray nucleosynthesis. New Astron. 4, 255–263 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Knauth, D. C., Federman, S. R., Lambert, D. L. & Crane, P. Newly synthesized lithium in the interstellar medium. Nature 405, 656–658 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Thi, W. F. et al. Substantial reservoirs of molecular hydrogen in the debris disks around young stars. Nature 409, 60–63 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Levison, H. F., Lissauer, J. J. & Duncan, M. J. Modeling the diversity of outer planetary systems. Astron. J. 373, 1998–2014 (1998).

    Article  ADS  Google Scholar 

  28. Gonzalez, G., Laws, C., Tyagi, S. & Reddy, B. E. Parent stars of extrasolar planets VI: Abundance analyses of 20 new systems. Astron. J. 121, 432–452 (2001).

    Article  ADS  CAS  Google Scholar 

  29. Boesgaard, A. M. & Tripicco, M. Lithium in early F dwarfs. Astrophys. J. 303, 724–739 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Jones, B. F., Fisher, D. & Soderblom, D. R. The evolution of the lithium abundances of solar-type stars. VIII. M67 (NGC 2682). Astron. J. 117, 330–338 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

These observations were made possible through the DDT time granted on the VLT Kueyen by ESO. We thank the Swiss National Science Foundation and the Spanish Ministry of Science and Technology for continuous support for this project. Support from the Fundação para a Ciênca e Tecnologia, Portugal, and to N.C.S. in the form of a scholarship is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Israelian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israelian, G., Santos, N., Mayor, M. et al. Evidence for planet engulfment by the star HD82943. Nature 411, 163–166 (2001). https://doi.org/10.1038/35075512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075512

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing