Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metamorphic core complex formation by density inversion and lower-crust extrusion

Abstract

Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks1. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults2, plutonic intrusions3 and flexural rotation of initially high-angle normal faults4. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading5. The continental rifting is recent (since 6 Myr ago)5, seismogenic6 and occurring at a rapid rate (25 mm yr-1)5. Here we present evidence—based on isostatic modelling, geological data and heat-flow measurements—that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present—which consists of dense ophiolite overlaying less-dense continental crust—this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The eastern Papuan peninsula has been undergoing extension since at least 6 Myr ago.
Figure 2: Schematic interpretation of the present-day crustal structure along the heat-flow profile extended from the Coral to Solomon seas.
Figure 3: Isostatic model of lower crustal flow and extrusion driven by density inversion and localization of extension.
Figure 4: Two-dimensional, time-dependent thermal calculations combining the effects of two extension calculations.

Similar content being viewed by others

References

  1. Coney, P. J. in Cordilleran Metamorphic Core Complexes (eds Crittenden, M. D., Coney, P. J. & Davis, G. H.) 7–31 (The Geological Society of America, Boulder, 1980).

    Book  Google Scholar 

  2. Wernicke, B. Low-angle normal faults in the Basin and Range Province: nappe tectonics in an extending orogen. Nature 291, 645–648 (1981).

    Article  ADS  Google Scholar 

  3. Lister, G. & Baldwin, S. Plutonism and the origin of metamorphic core complexes. Geology 21, 607–610 (1993).

    Article  ADS  Google Scholar 

  4. Buck, W. R. Flexural rotation of normal faults. Tectonics 7, 959–973 (1988).

    Article  ADS  Google Scholar 

  5. Taylor, B., Goodliffe, A. M. & Martínez, F. How continents break up: insights from Papua New Guinea. J. Geophys. Res. 104, 7497–7512 (1999).

    Article  ADS  Google Scholar 

  6. Abers, G. A., Mutter, C. Z. & Fang, J. Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark-D'Entrecasteaux rift system, Papua New Guinea. J. Geophys. Res. 102, 15301–15318 (1997).

    Article  ADS  Google Scholar 

  7. Rogerson, R., Hilyard, D., Francis, G. & Finlayson, E. The foreland thrust belt of Papua New Guinea. Proc. Pacif. Rim Congr. 87, 579–583 (1987).

    Google Scholar 

  8. Davies, H. L. & Warren, R. G. Origin of eclogite-bearing, domed, layered metamorphic complexes (“core complexes”) in the D'Entrecasteaux Islands, Papua New Guinea. Tectonics 7, 1–21 (1988).

    Article  ADS  Google Scholar 

  9. Weissel, J. K. & Watts, A. B. Tectonic evolution of the Coral Sea basin. J. Geophys. Res. 84, 4572–4582 (1979).

    Article  ADS  Google Scholar 

  10. Davies, H. L. Peridotite-gabbro-basalt complex in eastern Papua: An overthrust plate of oceanic mantle and crust. (Bulletin No. 128, Bureau of Mineral Resources, Geology and Geophysics, Canberra, 1971).

  11. Davies, H. L., Symonds, P. A. & Ripper, I. D. Structure and evolution of the southern Solomon Sea region. BMR J. Aust. Geol. Geophys. 9, 49–68 (1984).

    Google Scholar 

  12. Taylor, B. Background and regional setting. Proc. ODP Init. Rep. [CD-ROM] (eds Taylor, B. et al.) 180, 1–20 (Ocean Drilling Program, Texas A & M Univ., College Station, 1999).

    Google Scholar 

  13. Ferris, A. et al. Active continental extension and metamorphic core complexes: A PASSCAL seismic deployment in the D'Entrecasteaux Islands, eastern Papua New Guinea. Eos 81, F881 (2000).

    Google Scholar 

  14. Baldwin, S. L., Lister, G. S., Hill, E. J., Foster, D. A. & McDougall, I. Thermochronologic constraints on the tectonic evolution of an active metamorphic core complex, D'Entrecasteaux Islands, Papua New Guinea. Tectonics 12, 611–628 (1993).

    Article  ADS  Google Scholar 

  15. Hill, E. J., Baldwin, S. L. & Lister, G. S. Unroofing of active metamorphic core complexes in the D'Entrecasteaux Islands, Papua New Guinea. Geology 20, 907–910 (1992).

    Article  ADS  Google Scholar 

  16. Fang, J. Styles and Distribution of Continental Extension Derived from the Rift Basins of Eastern Papua New Guinea. Thesis, Columbia Univ. (2000).

    Google Scholar 

  17. Davies, H. L. & Warren, R. G. Eclogites of the D'Entrecasteaux Islands. Contrib. Mineral. Petrol. 112, 463–474 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Finlayson, D. M., Drummond, B. J., Collins, C. D. N. & Connelly, J. B. in Volcanism in Australasia (ed. Johnson, R. W.) 259–274 (Elsevier, Amsterdam, 1976).

    Google Scholar 

  19. Shipboard Scientific Party. Leg 180 Summary. Init. Rep. ODP (eds Taylor, B., et al.) 1–77 (Ocean Drilling Program, Texas A & M Univ., College Station, 1999).

  20. Baldwin, S. L., Monteleone, B., Hill, E. J., Ireland, T. R. & Fitzgerald, P. G. Continental extension in the western Woodlark Basin, Papua New Guinea. Eos 81, F1307 (2000).

    Google Scholar 

  21. Francis, G., Lock, J. & Okuda, Y. Seismic stratigraphy and structure of the area to the southeast of the Trobriand Platform. Geo-Mar. Lett. 7, 121–128 (1987).

    Article  ADS  Google Scholar 

  22. Milsom, J. The gravity field of the Papuan Peninsula. Geol. Mijnb. 52, 13–20 (1973).

    Google Scholar 

  23. Sclater, J. G., Jones, E. J. W. & Miller, S. P. The relationship of heat flow, bottom topography and basement relief in Peake and Freen Deeps, northeast Atlantic. Tectonophysics 10, 283–300 (1970).

    Article  ADS  Google Scholar 

  24. Langseth, M. G., Hobart, M. A. & Horai, K. Heat flow in the Bering Sea. J. Geophys. Res. 85, 3740–3750 (1980).

    Article  ADS  Google Scholar 

  25. Taylor, B., Goodliffe, A., Martínez, F. & Hey, R. N. Continental rifting and initial seafloor spreading in the Woodlark basin. Nature 374, 534–537 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Royden, L. & Keen, C. E. Rifting processes and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet. Sci. Lett. 51, 343–361 (1980).

    Article  ADS  Google Scholar 

  27. Steckler, M. S. The Thermal and Mechanical Evolution of Atlantic-Type Continental Margins. Thesis, Columbia Univ. (1981).

    Google Scholar 

  28. Buck, W. R., Martínez, F., Steckler, M. S. & Cochran, J. R. Thermal consequences of lithospheric extension: Pure and simple. Tectonics 7, 213–234 (1988).

    Article  ADS  Google Scholar 

  29. Seager, W. R. Low-angle gravity glide structures in the northern Virgin Mountains, Nevada and Arizona. Geol. Soc. Am. Bull. 81, 1517–1538 (1970).

    Article  ADS  Google Scholar 

  30. Ollier, C. D. & Pain, C. F. Active rising surficial gneiss domes in Papua New Guinea. J. Geol. Soc. Aust. 27, 33–44 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Davis for providing the heat flow probes used in this study; T. Lewis and A. Taylor for their help and expertise in acquiring and reducing heat flow measurements at sea; the Captain and crew of the RV Maurice Ewing for their efforts which led to a successful cruise; and R. Buck and S. Baldwin for comments and suggestions which improved the paper. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, F., Goodliffe, A. & Taylor, B. Metamorphic core complex formation by density inversion and lower-crust extrusion. Nature 411, 930–934 (2001). https://doi.org/10.1038/35082042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35082042

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing